Math, asked by Enmxonavil, 11 months ago

मान ज्ञात कीजिए।
If a and B are the zeroes of the quad
quadratic polynomial f(x) = x2 - 4x + 3,
find the value of a4b²+a²b4

Answers

Answered by rishabh1894041
1

Step-by-step explanation:

a \: and \: b \: are \: the \: zeros \: of \: the \:  \\ polynomial \:  {x}^{2}  - 4x + 3 = 0 \\ a + b \:  = 4 \:  \:  \:  \: ab = 3 \\  {a}^{4}  {b}^{2}  +  {a}^{2}  {b}^{4}  =  {a}^{2}  {b}^{2} ( {a}^{2}  +  {b}^{2} ) \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  {a}^{2}  {b}^{2} (( {a + b)}^{2} - 2ab) \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  9(16 - 6) \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 9 \times 10 = 90 \\  \\ hope \: it \: will \: help \: you.

Similar questions