Math, asked by divyadillibabu3360, 1 year ago

मान ज्ञात कीजिए \sum_{k=1}^{11} (2 + 3^k))

Answers

Answered by poonambhatt213
0

Answer:

22 + 3 / 2 ( 3^11 - 1)

Step-by-step explanation:

∑_{k=1}^{11} (2 + 3^k) = (2 + 3^1) + (2 + 3^2) + (2 + 3^3) + ... + (2 + 3^11)

                                        = 2 x 11 + ( 3^1 + 3^2 + 3^3 + ... + 3^11 )

                                        = 22 + 3 ( 3^11 - 1 ) / 3 - 1 = 22 + 3 / 2 ( 3^11 - 1)

             

इसलिये, ∑_{k=1}^{11} (2 + 3^k) का मान 22 + 3/2 ( 3^11 - 1)  है |

Answered by amitnrw
1

\sum_{k=1}^{11} (2 + 3^k)  =  22  + 3 (3¹¹ - 1)/2

Step-by-step explanation:

\sum_{k=1}^{11} (2 + 3^k)   =  (2 + 3¹) + (2 + 3²) + .................................+ (2 + 3¹¹)

=  2 * 11   + 3¹ + 3² +.................................+ 3¹¹

= 22 +  3 + 3² +.................................+ 3¹¹

= 22   +  S

S  = 3 + 3² +.................................+ 3¹¹

प्रथम पद a  =3

सार्व अनुपात = r =  3²/3 = 3

n = 11

Sₙ = a( rⁿ - 1)/(r - 1)

S₁₁=  3 (3¹¹ - 1)/(3 - 1)

S = 3 (3¹¹ - 1)/2

\sum_{k=1}^{11} (2 + 3^k)  =  22  + 3 (3¹¹ - 1)/2

और पढ़ें

x के किस मान के लिए संख्याएँ - \dfrac{2}{7},\,x,\,-\dfrac{7}{2} गुणोत्तर श्रेणी में हैं

brainly.in/question/9228862

मान ज्ञात कीजिए \sum_{k=1}^{11} (2 + 3^k))

brainly.in/question/9228853

brainly.in/question/9240409

Similar questions