Science, asked by premsagarchahare, 1 month ago

मुदा अल्पावधित नष्ट होऊ नये म्हणून उपाय सुचवा​

Answers

Answered by VishwajeetSingh25
5

Explanation:

Answer:

Given :-

A father is 30 years older than his son, however, he will be only thrice as old as the son after 5 years.

To Find :-

What is the father's present age.

Solution :-

Let,

\mapsto \bf{Present\: age\: of\: son\: =\: x\: years}\\

\mapsto \bf{Present\: age\: of\: father =\: (x + 30)\: years}\\

After 5 years :

\leadsto Present age of son = (x + 5) years

\leadsto Present age of father :

\leadsto \sf x + 30 + 5\: years

\leadsto \sf\bold{\green{x + 35\: years}}

According to the question,

\implies \sf 3(x + 5) =\: x + 35

\implies \sf 3x + 15 =\: x + 35

\implies \sf 3x - x =\: 35 - 15

\implies \sf 2x =\: 20

\implies \sf x =\: \dfrac{20}{2}

\implies \sf \bold{\purple{x =\: 10\: years}}

Hence, the required present ages are :

➲ Present age of son :

\longrightarrow \sf Present\: Age_{(Son)} =\: x\: years

\longrightarrow \sf\bold{\red{Present\: Age_{(Son)} =\: 10\: years}}

➲ Present age of father :

\longrightarrow \sf Present\: Age_{(Father)} =\: (x + 30)\: years

\longrightarrow \sf Present\: Age_{(Father)} =\: (10 + 30)\: years\\

\longrightarrow \sf\bold{\red{Present \: Age_{(Father)} =\: 40\: years}}

{\small{\bold{\underline{\therefore\: The\: present\: age\: of\: father\: is\: 40\: years\: .}}}}\\

Answer:

Given :-

The perimeter of a rectangle is same as the perimeter of a square of side 12 cm.

The length of the rectangle is 13 cm.

To Find :-

What is the breadth.

Formula Used :-

\clubsuit Perimeter of a rectangle Formula :

\small\mapsto \sf\boxed{\bold{\pink{Perimeter_{(Rectangle)} =\: 2(Length + Breadth)}}}\\

\clubsuit Perimeter of square Formula :

\mapsto \sf\boxed{\bold{\pink{Perimeter_{(Square)} =\: 4a}}}\\

where,

a = Side of Square

Solution :-

Let,

\mapsto \bf{Breadth\: of\: rectangle =\: x\: cm}

Given :

Side of square = 12 cm

Length of the rectangle = 13 cm

According to the question by using the formula we get,

\small\bigstar\: \: \sf\bold{\purple{Perimeter\: of\: Rectangle =\: Perimeter\: of\: Square}}\\

\longrightarrow \sf 2(Length + Breadth) =\: 4a

\longrightarrow \sf 2(13 + x) =\: 4(12)

\longrightarrow \sf 2(13 + x) =\: 4 \times 12

\longrightarrow \sf 26 + 2x =\: 48

\longrightarrow \sf 2x =\: 48 - 26

\longrightarrow \sf 2x =\: 22

\longrightarrow \sf x =\: \dfrac{\cancel{22}}{\cancel{2}}

\longrightarrow \sf x =\: \dfrac{11}{1}

\longrightarrow \sf\bold{\red{x =\: 11\: cm}}

{\small{\bold{\underline{\therefore\: The\: breadth\: of\: rectangle\: is\: 11\: cm\: .}}}}\\

Answer:

Given :-

The ratio of two numbers is 5 : 6.

8 is adding to each of the number make their ratio 7 : 8.

To Find :-

What are the numbers.

Solution :-

Let,

\mapsto \bf{First\: number =\: 5x}

\mapsto \bf{Second\: number =\: 6x}

According to the question,

\implies \sf \dfrac{5x + 8}{6x + 8} =\: \dfrac{7}{8}

By doing cross multiplication we get,

\implies \sf 7(6x + 8) =\: 8(5x + 8)

\implies \sf 42x + 56 =\: 40x + 64

\implies \sf 42x - 40x =\: 64 - 56

\implies \sf 2x =\: 8

\implies \sf x =\: \dfrac{\cancel{8}}{\cancel{2}}

\implies \sf\bold{\purple{x =\: 4}}

Hence, the required numbers are :

➲ First Number :

\longrightarrow \sf First\: number =\: 5x

\longrightarrow \sf First\: number =\: 5 \times 4

\longrightarrow \sf\bold{\red{First\: number =\: 20}}

➲ Second Number :

\longrightarrow \sf Second \: number =\: 6x

\longrightarrow \sf Second\: number =\: 6 \times 4

\longrightarrow \sf\bold{\red{Second\: number =\: 24}}

{\small{\bold{\underline{\therefore\: The\: numbers\: are\: 20\: and\: 24\: .}}}}\\

Hence, the correct options is option no (d) 20, 24.

Answered by hatkarkomal428
0

Answer:

मृदा अल्पधीत नष्ट होऊ नये म्हणून उपाय सुचवा

Similar questions