ma5hs formulas20 pleaseeewwwwwwwewwwwwwww
Answers
Answered by
3
Trigonometry
sin(θ)=opposite/hypotenusesin(θ)=opposite/hypotenuse
cos(θ)=adjacent/hypotenusecos(θ)=adjacent/hypotenuse
tan(θ)=opposite/adjacenttan(θ)=opposite/adjacent
sec(θ)=1/cos(θ)sec(θ)=1/cos(θ)
csc(θ)=1/sin(θ)csc(θ)=1/sin(θ)
cot(θ)=1/tan(θ)cot(θ)=1/tan(θ)
tan(θ)=sin(θ)/cos(θ)tan(θ)=sin(θ)/cos(θ)
cot(θ)=cos(θ)/sin(θ)cot(θ)=cos(θ)/sin(θ)
cos2(θ)+sin2(θ)=1cos2(θ)+sin2(θ)=1
tan2(θ)+1=sec2(θ)tan2(θ)+1=sec2(θ)
sec2(θ)−1=tan2(θ)sec2(θ)−1=tan2(θ)
sin(θ)=cos(π2−θ)sin(θ)=cos(π2−θ)
cos(θ)=sin(π2−θ)cos(θ)=sin(π2−θ)
sin(θ+π)=−sin(θ)sin(θ+π)=−sin(θ)
cos(θ+π)=−cos(θ)
Exponent rules:
ab⋅acabac(ab)ca1/b=ab+c=ab−c=abc=a−−√b
sin(θ)=opposite/hypotenusesin(θ)=opposite/hypotenuse
cos(θ)=adjacent/hypotenusecos(θ)=adjacent/hypotenuse
tan(θ)=opposite/adjacenttan(θ)=opposite/adjacent
sec(θ)=1/cos(θ)sec(θ)=1/cos(θ)
csc(θ)=1/sin(θ)csc(θ)=1/sin(θ)
cot(θ)=1/tan(θ)cot(θ)=1/tan(θ)
tan(θ)=sin(θ)/cos(θ)tan(θ)=sin(θ)/cos(θ)
cot(θ)=cos(θ)/sin(θ)cot(θ)=cos(θ)/sin(θ)
cos2(θ)+sin2(θ)=1cos2(θ)+sin2(θ)=1
tan2(θ)+1=sec2(θ)tan2(θ)+1=sec2(θ)
sec2(θ)−1=tan2(θ)sec2(θ)−1=tan2(θ)
sin(θ)=cos(π2−θ)sin(θ)=cos(π2−θ)
cos(θ)=sin(π2−θ)cos(θ)=sin(π2−θ)
sin(θ+π)=−sin(θ)sin(θ+π)=−sin(θ)
cos(θ+π)=−cos(θ)
Exponent rules:
ab⋅acabac(ab)ca1/b=ab+c=ab−c=abc=a−−√b
sunali3:
thanks
Similar questions