Math, asked by my1destiny101, 5 months ago

Maggie graphed the image of a 90 counterclockwise rotation about vertex A of . Coordinates B and C of are (2, 6) and (4, 3) and coordinates B’ and C’ of it’s image are (–2, 2) and (1, 4). What is the coordinate of vertex A.

Answers

Answered by rupayelwande1
0

Step-by-step explanation:

Let the vertex A has coordinates (x_A,y_A)(x

A

,y

A

)

Vectors AB and AB' are perpendicular, then

\begin{gathered}\overrightarrow {AB}=(2-x_A,6-y_A)\\ \\\overrightarrow {AB'}=(-2-x_A,2-y_A)\\ \\\overrightarrow {AB}\perp\overrightarrow {AB'}\Rightarrow \overrightarrow {AB}\cdot \overrightarrow {AB'}=0\Rightarrow (2-x_A)(-2-x_A)+(6-y_A)(2-y_A)=0\end{gathered}

AB

=(2−x

A

,6−y

A

)

AB

=(−2−x

A

,2−y

A

)

AB

AB

AB

AB

=0⇒(2−x

A

)(−2−x

A

)+(6−y

A

)(2−y

A

)=0

Vectors AC and AC' are perpendicular, then

\begin{gathered}\overrightarrow {AC}=(4-x_A,3-y_A)\\ \\\overrightarrow {AC'}=(1-x_A,4-y_A)\\ \\\overrightarrow {AC}\perp\overrightarrow {AC'}\Rightarrow \overrightarrow {AC}\cdot \overrightarrow {AC'}=0\Rightarrow (4-x_A)(1-x_A)+(3-y_A)(4-y_A)=0\end{gathered}

AC

=(4−x

A

,3−y

A

)

AC

=(1−x

A

,4−y

A

)

AC

AC

AC

AC

=0⇒(4−x

A

)(1−x

A

)+(3−y

A

)(4−y

A

)=0

Now, solve the system of two equations:

\begin{gathered}\left\{\begin{array}{l}(2-x_A)(-2-x_A)+(6-y_A)(2-y_A)=0\\ \\(4-x_A)(1-x_A)+(3-y_A)(4-y_A)=0\end{array}\right.\\ \\\left\{\begin{array}{l}-4-2x_A+2x_A+x_A^2+12-6y_A-2y_A+y^2_A=0\\ \\4-4x_A-x_A+x_A^2+12-3y_A-4y_A+y_A^2=0\end{array}\right.\\ \\\left\{\begin{array}{l}x_A^2+y_A^2-8y_A+8=0\\ \\x_A^2+y_A^2-5x_A-7y_A+16=0\end{array}\right.\end{gathered}

(2−x

A

)(−2−x

A

)+(6−y

A

)(2−y

A

)=0

(4−x

A

)(1−x

A

)+(3−y

A

)(4−y

A

)=0

−4−2x

A

+2x

A

+x

A

2

+12−6y

A

−2y

A

+y

A

2

=0

4−4x

A

−x

A

+x

A

2

+12−3y

A

−4y

A

+y

A

2

=0

x

A

2

+y

A

2

−8y

A

+8=0

x

A

2

+y

A

2

−5x

A

−7y

A

+16=0

Subtract these two equations:

5x_A-y_A-8=0\Rightarrow y_A=5x_A-85x

A

−y

A

−8=0⇒y

A

=5x

A

−8

Substitute it into the first equation:

\begin{gathered}x_A^2+(5x_A-8)^2-8(5x_A-8)+8=0\\ \\x_A^2+25x_A^2-80x_A+64-40x_A+64+8=0\\ \\26x_A^2-120x_A+136=0\\ \\13x_A^2-60x_A+68=0\\ \\D=(-60)^2-4\cdot 13\cdot 68=3600-3536=64\\ \\x_{A_{1,2}}=\dfrac{60\pm8}{2\cdot 13}=\dfrac{34}{13},2\end{gathered}

x

A

2

+(5x

A

−8)

2

−8(5x

A

−8)+8=0

x

A

2

+25x

A

2

−80x

A

+64−40x

A

+64+8=0

26x

A

2

−120x

A

+136=0

13x

A

2

−60x

A

+68=0

D=(−60)

2

−4⋅13⋅68=3600−3536=64

x

A

1,2

=

2⋅13

60±8

=

13

34

,2

Then

\begin{gathered}y_{A_{1,2}}=5\cdot \dfrac{34}{13}-8 \text{ or } 5\cdot 2-8\\ \\=\dfrac{66}{13}\text{ or } 2\end{gathered}

y

A

1,2

=5⋅

13

34

−8 or 5⋅2−8

=

13

66

or 2

Rotation by 90° counterclockwise about A(2,2) gives image points B' and C' (see attached diagram)

Attachments:
Similar questions