Physics, asked by Badboss9826, 6 months ago

Magnetic field at a distance 2.4 cm from a long straight wire is 16T. What must be

current through the wire?​

Answers

Answered by TheValkyrie
23

Answer:

Current = 1.92 × 10⁶ A

Explanation:

Given:

  • Magnetic field = 16 T
  • Distance = 2.4 cm = 0.024 m

To Find:

  • Current through the wire

Solution:

Here we have to find the current passing through the wire.

Magnetic field due to a long straigt current carrying wire is given by,

\boxed{\sf B =\dfrac{\mu_0\:I}{2\pi\:r}}

where B is the magnetic field,

I is the current flowing through the wire,

r is the distance,

μ₀ is the magnetic constant = 4 π × 10⁻⁷ H/m

Substituting the data we get,

\sf \dfrac{4\pi\times 10^{-7}\times  I}{2\pi \times 0.024} =16

Cancelling π on both numerator and denominator,

\sf \dfrac{2\times 10^{-7}\times  I}{  0.024} =16

2 × 10⁻⁷ × I = 16 × 0.024

2 × 10⁻⁷ × I = 0.384

I = 0.384/2 × 10⁻⁷

I = 0.192 × 10⁷

I = 1.92 × 10⁶ A

Hence the current flowing through the wire is 1.92 × 10⁶ A.

Answered by iTzShInNy
14

 \large \bigstar  \bf {\underbrace{ \color{navy}{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \: given \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }} }\bigstar

  • Magnetic field = 16 T
  • Distance = 2.4 cm

 \\  \\

 \large \bigstar  \bf {\underbrace{ \color{navy}{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \: To find \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }} }\bigstar

  • Current through the wire = ?

 \\  \\

 \large \bigstar  \bf {\underbrace{ \color{navy}{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \: Formula \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }} }\bigstar

  •   \large \bigstar  \mid\sf  \overline  {\color{red}\boxed{ \:  \:  \:  \:  \:  \:  \: b =  \frac{ \mu_{0} \: l }{2\pi \: r \:  \:  }  \:  \:  \:  \:  \:  \:  }} \mid \bigstar
  •  \\  \\

 \large \bigstar  \bf {\underbrace{ \color{navy}{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \: Note \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }} }\bigstar

Here,

  • B is the magnetic field
  • I is the current
  • r is the distance
  • \mu \:o is the magnetic constant

 \\  \\

 \large \bigstar  \bf {\underbrace{ \color{navy}{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \: here \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }} }\bigstar

 \\ \bf \red B = 10 { }^{ - 6}   \\ \bf  \red l = ? \\  \bf \red  r = 2.4 \\  \bf \red  {\mu _{0}} = 4\pi \times 10 {}^{ - 7}  \\  \\

 \large \bigstar  \bf {\underbrace{ \color{navy}{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \: Solution \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }} }\bigstar

\begin{gathered}I=\dfrac{2\pi rB}{\mu_o}\\\\I=\dfrac{2\pi \times 2.4\times 10^{-2}\times 16\times 10^{-6}}{4\pi \times 10^{-7}}\\\\I=1.92\ A\end{gathered}

So, the current of 1.92 A is flowing through the wire. Hence, this is the required solution.

 \\ \\

 \large \bigstar  \bf {\underbrace{ \color{navy}{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \: additional\: information \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }} }\bigstar

  1. Magnetic Field is the region around a magnetic material or a moving electric charge within which the force of magnetism acts.
  2. A magnetic field can be illustrated in two different ways.

  • Magnetic Field Vector
  • Magnetic Field Lines

 \\ \\

Attachments:
Similar questions