Physics, asked by savitreeraj76, 9 months ago

magnetic flux through a square of side 6cm placed with it's plane making angle 60° with a uniform field of 5T will be​

Answers

Answered by nirman95
6

To find:

Magnetic flux through a square of side 6cm placed with it's plane making angle 60° with a uniform field of 5 Tesla.

Calculation:

General expression for magnetic flux through a specified area is given as:

 \boxed{ \sf{ \phi = B \times A \times  \cos( \theta) }}

Note that \theta is the angle between the magnetic field intensity and the area vector.

So, \theta in this case is :

 \therefore \:  \theta =  {90}^{ \circ}  -  {60}^{ \circ}  =  {30}^{ \circ}

Now , putting all the available values in SI unit:

\sf{ \phi = B \times A \times  \cos( \theta) }

 =  > \sf{ \phi = 5 \times  { (\dfrac{6}{100}) }^{2}  \times  \cos( {30}^{ \circ} ) }

 =  > \sf{ \phi = 5 \times  { (\dfrac{6}{100}) }^{2}  \times  \dfrac{ \sqrt{3} }{2}  }

 =  > \sf{ \phi = 5 \times  \dfrac{36}{ {10}^{4} }  \times  \dfrac{ \sqrt{3} }{2}  }

 =  > \sf{ \phi = 5 \times  \dfrac{18}{ {10}^{4} }  \times   \sqrt{3}  }

 =  > \sf{ \phi =   \dfrac{90}{ {10}^{4} }  \times   \sqrt{3}  }

 =  > \sf{ \phi =   \dfrac{9}{ {10}^{3} }  \times   \sqrt{3}  }

 =  > \sf{ \phi =  9 \sqrt{3} \times  {10}^{ - 3}    \:T {m}^{2}  }

So, final answer is:

 \boxed{ \red{ \large{ \sf{ \phi =  9 \sqrt{3} \times  {10}^{ - 3}    \:T {m}^{2}  }}}}

Answered by EnchantedGirl
57

\sf \mathfrak{\underline{\red{Given:-}}}

\\

  • A square of side 6cm is placed with it's plane making angle 60° with a uniform field of 5T.

\\

\sf \mathfrak{\underline{\blue{To\: find:-}}}

\\

  • Magnetic flux through it.

\\

\sf \mathfrak{\underline{\green{Knowledge\: required:-}}}

\\

• The magnetic flux through a surface is the component of the magnetic field passing through that surface.

\\

↝ General expression for magnetic flux through a specified area is ,

\\

✷\underline{\boxed{\pink{\sf{ \phi = B \times A \times \cos( \theta) }}}}</p><p>

\\

Where,

\\

↗ B is the magnitude of the magnetic field (having the unit of Tesla, T).

↗A is the area of the surface.

↗ θ is the angle between the magnetic field lines and the normal (perpendicular) to A.

\\

\sf \mathfrak{\underline{\red{Solution:-}}}

\\

Value of 'θ' will be :

\\

\implies \theta = {90}^{ \circ} - {60}^{ \circ} = {30}^{ \circ }

\\

Now ,

\\

➝ ϕ=B×A×cos(θ)

\\

 ➝  \sf{ \phi = 5 \times { (\dfrac{6}{100}) }^{2} \times \cos( {30}^{ \circ} ) }\\\\\\</p><p></p><p>➝ \sf{ \phi = 5 \times { (\dfrac{6}{100}) }^{2} \times \dfrac{ \sqrt{3} }{2} }\\\\\\</p><p></p><p> ➝ \sf{ \phi = 5 \times \dfrac{36}{ {10}^{4} } \times \dfrac{ \sqrt{3} }{2} }\\\\\\</p><p>➝ \sf{ \phi = 5 \times \dfrac{18}{ {10}^{4} } \times \sqrt{3} }\\\\\\</p><p>➝ \sf{ \phi = \dfrac{90}{ {10}^{4} } \times \sqrt{3} }\\\\\\ ➝\sf{ \phi = \dfrac{9}{ {10}^{3} } \times \sqrt{3} }\\\\\\</p><p></p><p>➜ \sf{ \phi = 9 \sqrt{3} \times {10}^{ - 3} \:T {m}^{2} }</p><p>[tex]\\

Therefore,

\\

\underline{\boxed{ \pink{ \large{ \sf{ \implies \phi = 9 \sqrt{3} \times {10}^{ - 3} \:T {m}^{2} }}}}}

\\

_______________________________________

Similar questions