Physics, asked by nandini254431, 11 months ago

Magnitude of vector a is equal to magnitude of vector b is equal to magnitude of their resultant and the value of of all is a then find the value of Vector (A + 2B).(2A-B)​

Answers

Answered by BrainIyMSDhoni
44

Answer:

 3( \frac{ {a}^{2} }{2} )

Explanation:

Given

 | \vec{A}| = | \vec{B}| = | \vec{R}| = a

To Find

 (\vec{A} + 2\vec{B}). (\vec{2A} +\vec{B})

And

Ѳ must be 120° and

We know that

 \vec{A}.\vec{A} =  {a}^{2}  \\ \vec{B}.\vec{B} =  {a}^{2} \: and \\\vec{A}. \vec{B} = a \times a  \times \cos120 \degree \\\vec{A}. \vec{B} = a \times a \times  -  \frac{1}{2} \\ \vec{A}. \vec{B} =   - \frac{ {a}^{2} }{2}

Now by using appropriate method

 =  >   \vec{A}. (2\vec{A} -  \vec{B}) + 2\vec{B}.(2\vec{A} -  \vec{B})

Now on Solving brackets

=  > 2(\vec{A}.\vec{A}) - (\vec{A}.\vec{B})  + 4(\vec{B}.\vec{A}) - 2(\vec{B}.\vec{B})

=  > 2(\vec{A}.\vec{A}) = (\vec{A}.\vec{B}) - 4(\vec{B}.\vec{A}) + 2(\vec{B}.\vec{B})

Finally on putting values of

\vec{A}.\vec{A},\vec{B}.\vec{B} \: and \: \vec{A}.\vec{B}

 =  >  -  2 {a}^{2}  =   \frac{ { -a}^{2} }{2}  -   (\frac{ {-4a}^{2} }{2})  - 2 {a}^{2}  \\  =  >  \cancel{- 2 {a}^{2}}  =    \frac{ {3a}^{2} }{2}  -  \cancel{2 {a}^{2}} \\  =  > 3( \frac{  {a}^{2} }{2} )

Answered by Anonymous
15

Hey there

refer to attachment

Attachments:
Similar questions