Hindi, asked by vanshikaverma6, 7 months ago

Mahabharat ko Apne vichar mein likhiye​

Answers

Answered by ay771447
0

महाभारत

पांडव सदैव धर्म के मार्ग में चलते थे

पर दुर्योधन कभी भी धर्म के मार्ग नहीं अपनाया

Answered by Anonymous
2

Explanation:

Given that 

DE=4cm

=5.5cm

DF=5cm

Step of construction

(i) Draw a line segment EF=5.5cm

(ii) With F as centre and radius 5cm draw an arc

(iii) With E as centre & radius 4cm draw another arc cutting the previous arc at D

(iv) Join FD and ED then triangle DEF is the required triangle.

Steps for construction :

Step 1. Draw a line segment PQ=3.5 cm.

Step 2. With P as centre and radius =4.5 cm, draw an arc.

Step 3. With Q as centre and radius =6.5 cm, draw an arc to cut the arc in the previous step at point S

Step 4. Join PS  and QS

Step 5. With S as centre and radius =5 cm, draw an arc.

Step 3. With Q as centre and radius =4 cm, draw an arc to cut the arc in the previous step at point R

Step 4. Join SR  and QR

Hence, required quadrilateral PQRS is constructed.

Given that 

DE=4cm

=5.5cm

DF=5cm

Step of construction

(i) Draw a line segment EF=5.5cm

(ii) With F as centre and radius 5cm draw an arc

(iii) With E as centre & radius 4cm draw another arc cutting the previous arc at D

(iv) Join FD and ED then triangle DEF is the required triangle.

Steps for construction :

Step 1. Draw a line segment PQ=3.5 cm.

Step 2. With P as centre and radius =4.5 cm, draw an arc.

Step 3. With Q as centre and radius =6.5 cm, draw an arc to cut the arc in the previous step at point S

Step 4. Join PS  and QS

Step 5. With S as centre and radius =5 cm, draw an arc.

Step 3. With Q as centre and radius =4 cm, draw an arc to cut the arc in the previous step at point R

Step 4. Join SR  and QR

Hence, required quadrilateral PQRS is constructed.

Given that 

DE=4cm

=5.5cm

DF=5cm

Step of construction

(i) Draw a line segment EF=5.5cm

(ii) With F as centre and radius 5cm draw an arc

(iii) With E as centre & radius 4cm draw another arc cutting the previous arc at D

(iv) Join FD and ED then triangle DEF is the required triangle.

Steps for construction :

Step 1. Draw a line segment PQ=3.5 cm.

Step 2. With P as centre and radius =4.5 cm, draw an arc.

Step 3. With Q as centre and radius =6.5 cm, draw an arc to cut the arc in the previous step at point S

Step 4. Join PS  and QS

Step 5. With S as centre and radius =5 cm, draw an arc.

Step 3. With Q as centre and radius =4 cm, draw an arc to cut the arc in the previous step at point R

Step 4. Join SR  and QR

Hence, required quadrilateral PQRS is constructed.

Given that 

DE=4cm

=5.5cm

DF=5cm

Step of construction

(i) Draw a line segment EF=5.5cm

(ii) With F as centre and radius 5cm draw an arc

(iii) With E as centre & radius 4cm draw another arc cutting the previous arc at D

(iv) Join FD and ED then triangle DEF is the required triangle.

Steps for construction :

Step 1. Draw a line segment PQ=3.5 cm.

Step 2. With P as centre and radius =4.5 cm, draw an arc.

Step 3. With Q as centre and radius =6.5 cm, draw an arc to cut the arc in the previous step at point S

Step 4. Join PS  and QS

Step 5. With S as centre and radius =5 cm, draw an arc.

Step 3. With Q as centre and radius =4 cm, draw an arc to cut the arc in the previous step at point R

Step 4. Join SR  and QR

Hence, required quadrilateral PQRS is constructed.

Given that 

DE=4cm

=5.5cm

DF=5cm

Step of construction

(i) Draw a line segment EF=5.5cm

(ii) With F as centre and radius 5cm draw an arc

(iii) With E as centre & radius 4cm draw another arc cutting the previous arc at D

(iv) Join FD and ED then triangle DEF is the required triangle.

Input to the given function f is denoted by t; input to its Laplace transform F is denoted by s. By default, the domain of the function f=f(t) is the set of all non- negative real numbers. The domain of its Laplace transform depends on f and can vary from a function to a function. L(fInput to the given function f is denoted by t; input to its Laplace transform F is denoted by s. By default, the domain of the function f=f(t) is the set of all non- negative real numbers. The domain of its Laplace transform depends on f and can vary from a function to a function. L(f

Similar questions