Social Sciences, asked by gursimrandeepkaurbat, 2 months ago

make a picture of boy realated the topic of unity in diversity​

Answers

Answered by sidhanshijain09
0

Answer: Prefer the attachment mate

Attachments:
Answered by TrustedAnswerer19
4

 \huge \:  \fbox \red {{{ \colorbox{green}{{answer}}}}}

Topic :-This is your punishment for spamming in my question.

If you do not know the answer, refrain from answering.

Don't be greedy for points.

Differentiation

To Differentiate :-

f(x)=\cot x \cdot \ln \sec x

Solution :-

f(x)=\cot x \cdot \ln \sec x

\dfrac{d(f(x))}{dx}=\dfrac{d(\cot x \cdot \ln \sec x)}{dx}

\dfrac{d(f(x))}{dx}=\ln \sec x\cdot\dfrac{d(\cot x )}{dx}+\cot x\cdot\dfrac{d(\ln\sec x )}{dx}

\left(\because \dfrac{d(fg)}{dx}=g\cdot \dfrac{d(f)}{dx}+f\cdot\dfrac{d(g)}{dx} \right)

\dfrac{d(f(x))}{dx}=\ln \sec x\cdot(-\csc^2x)+\cot x\cdot\dfrac{d(\ln\sec x )}{dx}

\left(\because \dfrac{d(\cot x)}{dx}=-\csc^2x \right)

\dfrac{d(f(x))}{dx}=-\csc^2x \cdot\ln \sec x+\cot x\cdot\dfrac{1}{\sec x}\cdot\dfrac{d(\sec x )}{dx}

\left(\because \dfrac{d(\ln t)}{dx}=\dfrac{1}{t}\cdot\dfrac{dt}{dx} \right)

\dfrac{d(f(x))}{dx}=-\csc^2x \cdot\ln \sec x+\cot x\cdot\dfrac{1}{\sec x}\cdot \sec x\cdot \tan x

\left(\because \dfrac{d(\sec x)}{dx}=\sec x\cdot \tan x \right)

\dfrac{d(f(x))}{dx}=-\csc^2x \cdot\ln \sec x+(\cot x\cdot\tan x)\cdot\left (\dfrac{1}{\cancel{\sec x}}\cdot \cancel{\sec x}\right)

\dfrac{d(f(x))}{dx}=-\csc^2x \cdot\ln \sec x+1

(\because \cot x \cdot \tan x = 1)

Answer :-

\underline{\boxed{\dfrac{d(f(x))}{dx}=1-\csc^2x \cdot\ln \sec x}}

Note : csc x = cosec x

Similar questions