Math, asked by auiaharpit70, 1 year ago

make it.p please soonnnnnnnmn... please

Attachments:

Answers

Answered by TheUrvashi
6
#ANSWER #

since \: \alpha \: and \: \beta \: are \: the \: zeros \: of \: the \: polynomial \: {x}^{2} - 4 \sqrt{3} + 3 \: therefore \\ sum \: of \: zeros \: of \: polynomial \: \\ = \alpha + \beta = \frac{ - (coefficient \: of \: x)}{coefficient \: of {x}^{2} } \\ = \alpha + \beta = \frac{ - ( - 4 \sqrt{3}) }{1} = 4 \sqrt{3} ........(1)\\ = > product \: of \: zeros \: of \: given \: polynomial \: \\ = \alpha \beta = \frac{constant \: term}{coefficient \: of \: {x}^{2} } \\ = > \alpha \beta = \frac{3}{1} = 3.......(2) \\now \: \: \: \\ \alpha + \beta - \alpha \beta = 4 \sqrt{3} - 3 = \sqrt{3} (4 - \sqrt{3} ) \: \: using \: (1) \: and \:( 2)
#THANX

auiaharpit70: Thank-you
Similar questions