Math, asked by bakeomemejemaimah, 10 months ago

Make r the subject of the formula (a/√r–b)²= c

Answers

Answered by mysticd
2

 Given \: formula: \Big( \frac{a}{\sqrt{r-b)}}\Big)^{2} = c

 \implies \Big( \frac{a}{\sqrt{r-b)}}\Big)=\pm \sqrt{ c }

 \implies \frac{a}{\pm \sqrt{c}} = \sqrt{r-b}

/* On squaring both sides,we get */

 \implies \Big( \frac{a}{\pm \sqrt{c}}\Big)^{2} = r - b

 \implies \frac{a^{2}}{c} = r - b

 \implies r - b =  \frac{a^{2}}{c}

 \implies r  =  \frac{a^{2}}{c}  + b \: \blue { ( r \:is \: subject ) }

Therefore.,

 \red{ r} \green { =\frac{a^{2}}{c}  + b} \\ \blue { ( r \:is \: subject ) }

•••♪

Answered by Anonymous
1

\sf\red{\underline{\underline{Answer:}}}

\sf{The \ required \ formula \ is \ r=\frac{a^{2}}{c}+b}

\sf\orange{Given:}

\sf{\implies{(\frac{a}{\sqrt{r-b}})^{2}=c}}

\sf\pink{To \ find:}

\sf{Formula \ where \ r \ is \ the \ subject.}

\sf\green{\underline{\underline{Solution:}}}

\sf{\implies{(\frac{a}{\sqrt{r-b}})^{2}=c}}

\sf{\implies{\frac{a^{2}}{r-b}=c}}

\sf{\implies{\frac{1}{r-b}=\frac{c}{a^{2}}}}

\sf{By \ Invertendo }

\sf{\implies{r-b=\frac{a^{2}}{c}}}

\sf{\implies{r=\frac{a^{2}}{c}+b}}

\sf{Here, \ r \ is \ the \ subject.}

\sf\purple{\tt{\therefore{The \ required \ formula \ is \ r=\frac{a^{2}}{c}+b}}}

Similar questions