Math, asked by siddiquiafreen8d, 8 months ago

make solution set of this using cross multiplication method:9x+11y+15=0
7x-13y-25=0​

Answers

Answered by pulakmath007
3

\huge\boxed{\underline{\underline{\green{\tt Solution}}}} </p><p>

The given equations are

9x + 11y + 15 = 0 \:  \: ........(1)

7x - 13y - 25 = 0  \:  \: .........(2)

On Cross Multiplication we get

 \frac{x}{11 \times ( - 25) - ( - 13) \times 15} =  \frac{y}{7 \times 15 - 9 \times ( - 25)}  =  \frac{1}{9 \times ( - 13) - 7 \times 11}

 \frac{x}{( - 275 + 195)}  =  \frac{y}{(105 + 225)}  =  \frac{1}{( - 117 - 77)}

 \frac{x}{ - 80}  =  \frac{y}{330}  =  \frac{1}{ - 194}

Above gives

 \frac{x}{ - 80}  =  \frac{1}{ - 194}

x =  \frac{80}{194}  =  \frac{40}{97}

 \frac{y}{330}  =  \frac{1}{ - 194}

y =  -  \frac{330}{194}  =  -  \frac{165}{97}

So the required solution set is

x  =  \frac{40}{97} & y  =  -  \frac{165}{97}

</p><p>\displaystyle\textcolor{red}{Please \:  Mark \:  it  \: Brainliest}

Answered by khushisingh637
2

solution☘️

the given equation written as ;

9x + 11y  + 15  = 0 \\ 7x - 13y - 25 = 0 \\  \\

this is customarily written as :

 \frac{x}{b1c2 - b2c1}  =  \frac{y}{c1a2 - c2a1}  =  \frac{1}{a1b2 - a2b1}

 \frac{x}{11 \times(  - 25) - ( - 13) \times 25}  =  \frac{y}{7 \times 15 - 9 \times ( - 25)}  =  \frac{1}{9 \times ( - 13) - 7 \times 11}

 \frac{x}{ - 275 + 195}  =  \frac{y}{105 + 225}  =  \frac{1}{ - 117 - 77}  \\

 \frac{x}{ - 80 }  =  \frac{y}{330}  =  \frac{1}{194}

x =  \frac{ - 80}{ - 194}  =  \frac{40}{ 97}  \\ y =  \frac{330}{ - 194}  =  \frac{165}{ - 97}

hence ,

x =  \frac{40}{97} and \: y =  \frac{165}{ - 97}

Similar questions