Math, asked by praniRuthiSus, 1 year ago

Manisha has a garden in the shape of a rhombus. The perimeter of the garden is 40m and one of its diagonal is 16m. She wants to divide it into two equal parts and use these equal parts for growing vegetables and wheat separately. Find the area of each part of the garden.

Answers

Answered by ansh2K16
93
Perimeter of the garden=40m
Length of each side of the rhombus=(40/4)m=10m

let length of the 2nd diagonal be x m
∴ a=[ \sqrt{ m^{2}+ n^{2}  } ]÷2 (a:length of side, m:length of first                                                                          diagonal, n:length of second diagonal)
=>2×10= \sqrt{16^{2}+ n^{2} }
=>(20)²=256+n²
=>400=256+n²
=>n²=400-256=144
=>n=12m

Length of second diagonal=12m

Area of the garden=(m×n)÷2
                             =(16×12)÷2
                             =96m²

Area of each part of garden=(96÷2)=48m²
Answered by Anonymous
41
_______✨ HEY MATE ✨_______

===========
Solution :-
===========


Perimeter of the garden=40m
Length of each side of the rhombus=(40/4)m=10m

let length of the 2nd diagonal be x m
∴ a=÷2 (a:length of side, m:length of first                                                                          diagonal, n:length of second diagonal)
=>2×10=
=>(20)²=256+n²
=>400=256+n²
=>n²=400-256=144
=>n=12m

Length of second diagonal=12m

Area of the garden=(m×n)÷2
                             =(16×12)÷2
                             =96m²

Area of each part of garden=(96÷2)=48m²

✌️ I THINK IT HELPED YOU ✌️

Similar questions