Math, asked by hahdimunnykalyad, 1 year ago

Maria invested Rs 8,000 in a business. She would be paid interest at 5% per annum compounded annually. Find. (i) The amount credited against her name at the end of the second year (ii) The interest for the 3 rd year.

Answers

Answered by mysticd
64
i hope this will usful to u
Attachments:
Answered by SANDHIVA1974
4

Answer:

Gɪᴠᴇɴ :

➛ Principle = Rs.8000

➛ Time = 2 years

➛ Rate of Interest = 5% per annum

\begin{gathered}\end{gathered}

Tᴏ Fɪɴᴅ :

➛ The amount credited against her name at the end of the second year.

\begin{gathered}\end{gathered}

Cᴏᴄᴇᴘᴛ :

↝ Here the concept of Amount has been used. We have given that the Principal is Rs.8000, Time is 2 years and rate is 5 p.c.p.a . We have need to find the Amount.

↝ So, we will find out the Amount by substituting the values in the formula.

\begin{gathered}\end{gathered}

Usɪɴɢ Fᴏʀᴍᴜʟᴀ :

\longrightarrow{\footnotesize{\underline{\boxed{\pmb{\sf{Amount={P{\bigg(1 + \dfrac{R}{100}{\bigg)}^{T}}}}}}}}}

Where :-

» A = Amount

» P = Principle

» R = Rate

» T = Time

\begin{gathered}\end{gathered}

Sᴏʟᴜᴛɪᴏɴ :

Finding the Amount by substituting the values in the formula :-

{\dashrightarrow{\small{\sf{Amount={P{\bigg(1 + \dfrac{R}{100}{\bigg)}^{T}}}}}}}

{\dashrightarrow{\small{\sf{Amount={8000{\bigg(1 + \dfrac{5}{100}{\bigg)}^{2}}}}}}}

{\dashrightarrow{\small{\sf{Amount={8000{\bigg(\dfrac{(1 \times 100) + (5 \times 1)}{100}{\bigg)}^{2}}}}}}}

{\dashrightarrow{\small{\sf{Amount={8000{\bigg(\dfrac{100 + 5}{100}{\bigg)}^{2}}}}}}}

{\dashrightarrow{\small{\sf{Amount={8000{\bigg(\dfrac{105}{100}{\bigg)}^{2}}}}}}}

{\dashrightarrow{\small{\sf{Amount={8000{\bigg( \cancel{\dfrac{105}{100}}{\bigg)}^{2}}}}}}}

{\dashrightarrow{\small{\sf{Amount={8000{\bigg({\dfrac{21}{20}}{\bigg)}^{2}}}}}}}

{\dashrightarrow{\small{\sf{Amount={8000{\bigg({\dfrac{21}{20} \times \dfrac{21}{20}}{\bigg)}}}}}}}

{\dashrightarrow{\small{\sf{Amount={8000{\bigg(\dfrac{441}{400} \bigg)}}}}}}

{\dashrightarrow{\small{\sf{Amount={8000 \times \dfrac{441}{400}}}}}}

{\dashrightarrow{\small{\sf{Amount={ \cancel{8000} \times \dfrac{441}{\cancel{400}}}}}}}

{\dashrightarrow{\small{\sf{Amount={ 20 \times 441}}}}}

{\dashrightarrow{\small{\sf{Amount={Rs.8820}}}}}

{\longrightarrow{\small{\underline{\boxed{\pmb{\sf{Amount={Rs.8820}}}}}}}}

∴ The amount credited against Maria name at the end of the second year is Rs.8820.

\begin{gathered}\end{gathered}

Lᴇᴀʀɴ Mᴏʀᴇ :

\dashrightarrow{\small{\underline{\boxed{\sf{\purple{ Simple \: Interest = \dfrac{P \times R \times T}{100}}}}}}}

\dashrightarrow\small{\underline{\boxed{\sf{\purple{Amount={P{\bigg(1 + \dfrac{R}{100}{\bigg)}^{T}}}}}}}}

\dashrightarrow\small{\underline{\boxed{\sf{\purple{Amount = Principle + Interest}}}}}

 \dashrightarrow\small{\underline{\boxed{\sf{\purple{ Principle=Amount - Interest }}}}}

 \dashrightarrow\small{\underline{\boxed{\sf{\purple{Principle = \dfrac{Amount\times 100 }{100 + (Time \times Rate)}}}}}}

\dashrightarrow\small{\underline{\boxed{\sf{\purple{Principle = \dfrac{Interest \times 100 }{Time \times Rate}}}}}}

{\underline{\overline{\rule{200pt}{2pt}}}}

Similar questions