Physics, asked by ishu3073, 7 months ago

mass= 250g, final velocity= 5m/s initially velocity 2m/s work done? ​

Answers

Answered by BrainlyRonaldo
5

\bigstar Given

Mass = 250 g

Final velocity = 5 m/s

Initial velocity = 2 m/s

\bigstar To Find

Work done

\bigstar Solution:

We know that,

\star Work Energy Theorem

\longrightarrow \sf W=\Delta K.E

Here,

W = work done

Δ K.E = change in kinetic energy

We know that,

\sf \longrightarrow \Delta K.E=\dfrac{1}{2}m(v^{2}-u^{2})

Hence,

\sf \longrightarrow W=\dfrac{1}{2}m(v^{2}-u^{2})

According to the question,

We are asked to find the work done

So, we must find "W"

Given that,

Mass = 250 g

Final velocity = 5 m/s

Initial velocity = 2 m/s

Hence,

  • m = 250 g = 0.25 kg
  • v = 5 m/s
  • u = 2 m/s

Substituting the values,

We get,

\sf \longrightarrow W=\dfrac{1}{2} \times 0.25 \times (5^{2}-2^{2})

\sf \longrightarrow W=\dfrac{1}{2} \times 0.25 \times (25-4)

\sf \longrightarrow W=\dfrac{1}{2} \times 0.25 \times (21)

On further simplification,

We get,

\sf \longrightarrow W=2.625 \ J

Answered by EnchantedGirl
10

Given:-

\\

  • Mass = 250 g

  • Final velocity = 5 m/s

  • Initial velocity = 2 m/s

\\

To Find:-

\\

  • Work done

\\

★ \sf Solution:-

\\

Formula :

\\

Work Energy Theorem :-

\\

↝ W=ΔK.E

\\

Where,

\\

W = work done

Δ K.E = change in kinetic energy

\\

Also ,

\\

\purple{\sf ➝\Delta K.E=\dfrac{1}{2}m(v^{2}-u^{2})}

\\

Hence,

\\

\sf \longrightarrow W=\dfrac{1}{2}m(v^{2}-u^{2})

\\

Now,

\\

m = 250 g = 0.25 kg

v = 5 m/s

u = 2 m/s

\\

Substituting the values,

\\

\sf \implies W=\dfrac{1}{2} \times 0.25 \times (5^{2}-2^{2})

\\

\sf \implies W=\dfrac{1}{2} \times 0.25 \times (25-4)

\\

\sf \implies W=\dfrac{1}{2} \times 0.25 \times (21)

\\

Therefore,

\\

\sf \bigstar \boxed{\pink{W=2.625} }\ J

_______________________________________

Similar questions