Physics, asked by manamfatiyaa, 9 months ago

mass of Rod in the given question?​

Attachments:

Answers

Answered by Anonymous
6

Answer:

100 grams

Explanation:

Given :

  • Mass of the suspended object = 80 grams = 0.08 kg
  • The rod is equilibrium position even if the mass is suspended
  • The centre of gravity is 14 cm away from A

To find:

  • Mass of the rod

Distance at 14 cm away from A = 30 cm - 14 cm = 16 cm

Using moment rule:

Moment of the force = Force × distance

Substituting the values :

0.8×20=16×W

16 = 16 W

W = 16/16

W = 1 kg m/s^-2

So, W = 1000 Newtons

Here we need to find the mass and the weight is 1000 Newtons

Gravitational force = 10 m/s²

Mass = 1000/10

Mass = 100 grams

100 grams

Answered by shadowsabers03
9

Position of center of mass from the support edge,

\displaystyle\longrightarrow\sf{x_1=30\ cm-14\ cm}

\displaystyle\longrightarrow\sf{x_1=16\ cm}

Let \displaystyle\sf {M} be mass of the rod.

Mass of the block suspended on the rod,

\displaystyle\longrightarrow\sf{m=80\ mg}

\displaystyle\longrightarrow\sf{m=80\times10^{-3}\ g}

\displaystyle\longrightarrow\sf{m=0.08\ g}

Its position from the support edge is \displaystyle\sf {x_2=20\ cm.}

Since the net rotational effect about the support edge is zero, we have,

\displaystyle\longrightarrow\sf{Mx_1-mx_2=0}

\displaystyle\longrightarrow\sf{M=\dfrac {mx_2}{x_1}}

\displaystyle\longrightarrow\sf{M=\dfrac {0.08\times20}{16}}

\displaystyle\longrightarrow\underline {\underline {\sf{M=0.1\ g}}}

\displaystyle\longrightarrow\sf {\underline {\underline {M=100\ mg}}}

Hence mass of the rod is \displaystyle\bf {100\ mg.}

Similar questions