Chemistry, asked by veenabhairwani, 1 day ago

match the column :

Column I Column II
1. Thermal power plant. (a)Methane
2. Hydro power plant. (b) Nuclear fission
3. Major component of biogas to produce
(c) Use coal, petroleum and natural gas thermal electricity
4. Device which converts (d) Solar cell solar energy into electricity
5. Nuclear power plant generation
(e) Dams are constructed for power ​

Answers

Answered by aurangzebazamstd6c
0

Answer:

Appropriate Question :-

If f(x) = sin[π²]x + sin[-π²]x where [] denotes the greatest integer less than or equal to x then

[A] none of these

[B] f(π/2) = 1

[C] f(π) = 2

[D] f(π/4) = -1

\large\underline{\sf{Solution-}}

Solution−

Given that

\begin{gathered}\rm \: f(x) = sin[ {\pi}^{2}]x + sin[ - {\pi}^{2}]x \\ \end{gathered}

f(x)=sin[π

2

]x+sin[−π

2

]x

We know

Greatest Integer function reduces any real number to its nearest lowest Integer.

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y = [x]\\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf [0,1) & \sf 0 \\ \\ \sf [1,2) & \sf 1 \\ \\ \sf [2,3) & \sf 2\\ \\ \sf [ - 1,0) & \sf - 1\\ \\ \sf [ - 2, - 1) & \sf - 2 \end{array}} \\ \end{gathered} \\ \end{gathered}

x

[0,1)

[1,2)

[2,3)

[−1,0)

[−2,−1)

y=[x]

0

1

2

−1

−2

Now, We know

\begin{gathered}\rm \: \pi = 3.14 \\ \end{gathered}

π=3.14

\begin{gathered}\rm\implies \: {\pi}^{2} = 9.8596 \\ \end{gathered}

⟹π

2

=9.8596

So,

\begin{gathered}\rm\implies \:[{\pi}^{2}] = [9.8596] = 9 \\ \end{gathered}

⟹[π

2

]=[9.8596]=9

and

\begin{gathered}\rm\implies \:[ - {\pi}^{2}] = [ - 9.8596] = - 10\\ \end{gathered}

⟹[−π

2

]=[−9.8596]=−10

Thus, given function

\begin{gathered}\rm \: f(x) = sin[ {\pi}^{2}]x + sin[ - {\pi}^{2}]x \\ \end{gathered}

f(x)=sin[π

2

]x+sin[−π

2

]x

can be rewritten as

\begin{gathered}\rm \: f(x) = sin9x + sin( - 10x) \\ \end{gathered}

f(x)=sin9x+sin(−10x)

\begin{gathered}\rm \: f(x) = sin9x - sin10x \\ \end{gathered}

f(x)=sin9x−sin10x

So,

\begin{gathered}\rm \: f\bigg( \dfrac{\pi}{2} \bigg) = sin\bigg( \dfrac{9\pi}{2} \bigg) - sin\bigg( \dfrac{10\pi}{2} \bigg) \\ \end{gathered}

f(

2

π

)=sin(

2

)−sin(

2

10π

)

\begin{gathered}\rm \: f\bigg( \dfrac{\pi}{2} \bigg) = sin\bigg( \pi + \dfrac{\pi}{2} \bigg) - sin5\pi \\ \end{gathered}

f(

2

π

)=sin(π+

2

π

)−sin5π

\begin{gathered}\rm \: f\bigg( \dfrac{\pi}{2} \bigg) = sin\bigg( \dfrac{\pi}{2} \bigg) - 0 \\ \end{gathered}

f(

2

π

)=sin(

2

π

)−0

\begin{gathered}\rm\implies \:\rm \: f\bigg( \dfrac{\pi}{2} \bigg) = 1 \\ \end{gathered}

⟹f(

2

π

)=1

So, option [B] is correct.

Now, Consider

\begin{gathered}\rm \: f(\pi) = sin9\pi - sin10\pi \\ \end{gathered}

f(π)=sin9π−sin10π

\begin{gathered}\rm \: f(\pi) = 0 - 0 \\ \end{gathered}

f(π)=0−0

\begin{gathered}\rm\implies \:\rm \: f(\pi) = 0 \\ \end{gathered}

⟹f(π)=0

It implies, option [C] is not correct.

Now, Consider

\begin{gathered}\rm \: f\bigg( \dfrac{\pi}{4} \bigg) = sin\bigg( \dfrac{9\pi}{4} \bigg) - sin\bigg( \dfrac{10\pi}{4} \bigg) \\ \end{gathered}

f(

4

π

)=sin(

4

)−sin(

4

10π

)

\begin{gathered}\rm \: f\bigg( \dfrac{\pi}{4} \bigg) = sin\bigg(2\pi + \dfrac{\pi}{4} \bigg) - sin\bigg( \dfrac{5\pi}{2} \bigg) \\ \end{gathered}

f(

4

π

)=sin(2π+

4

π

)−sin(

2

)

\begin{gathered}\rm \: f\bigg( \dfrac{\pi}{4} \bigg) = sin\bigg(\dfrac{\pi}{4} \bigg) - sin\bigg(2\pi + \dfrac{\pi}{2} \bigg) \\ \end{gathered}

f(

4

π

)=sin(

4

π

)−sin(2π+

2

π

)

\begin{gathered}\rm \: f\bigg( \dfrac{\pi}{4} \bigg) = \dfrac{1}{ \sqrt{2} } - sin\bigg( \dfrac{\pi}{2} \bigg) \\ \end{gathered}

f(

4

π

)=

2

1

−sin(

2

π

)

\begin{gathered}\rm \: f\bigg( \dfrac{\pi}{4} \bigg) = \dfrac{1}{ \sqrt{2} } - 1\\ \end{gathered}

f(

4

π

)=

2

1

−1

It implies, option [D] is not correct.

Hence, from above we concluded that

\begin{gathered}\rm\implies \: \:\boxed{\tt{ \: \rm \: f\bigg( \dfrac{\pi}{2} \bigg) = 1 \: \: }} \\ \end{gathered}

f(

2

π

)=1

It implies, option [B] is correct.

Similar questions