Math, asked by Anonymous, 9 months ago

mates help to solve this by quadratic formula ​...

condition x is not equal to +1 and 3

Attachments:

Answers

Answered by amansharma264
3

 \large \bold \green{ \underline{answer}} \\  \\ \implies \bold{x =  - 1 \:  \:  \: and \:  \:  \:  \: x = 4}

\implies \bold \green{question} \\  \\ \implies \bold{ \frac{2}{x - 3} -  \frac{3}{x - 1} = 1  } \\  \\ \implies \bold{ to \:  \: find \:  \: value \:  \: of \:  \: x} \\  \\ \implies \bold \orange{explanation} \\  \\ \implies \bold{ \frac{2(x - 1) - 3(x - 3)}{(x - 3)(x - 1)} = 1 } \\  \\ \implies \bold{ \frac{2x -2 - 3x + 9}{ {x}^{2} - 4x + 3 } = 1 } \\  \\ \implies \bold{  { - x + 7} =  {x}^{2} - 4x + 3  } \\  \\ \implies \bold{ {x}^{2} - 3x - 4 = 0 } \\  \\ \implies \bold{ {x}^{2} - 4x + x -4 = 0  } \\  \\ \implies \bold{x(x - 4) + 1(x - 4) = 0} \\  \\ \implies \bold{(x + 1)(x - 4) = 0} \\  \\ \implies \bold{x =  \:  - 1} \:  \:  \: and \:  \:  \: x = 4

Answered by Anonymous
2

QUESTION:

 \frac{2}{x - 3}  -  \frac{3}{x - 1} = 1

solve for x.

ANSWER:

 \frac{2}{x - 3}  -  \frac{3}{x - 1} = 1 \\

(taking \: lcm \: in \: lhs \: side)

 \frac{2(x - 1) - 3(x - 3)}{(x - 3)(x - 1)}  = 1 \\

(solving \: numerator)

 \frac{2x - 2 - 3x + 9}{(x - 3)(x - 1)}  = 1

 \frac{ - x + 7}{(x - 3)(x - 1)}  = 1 \\

(cross \: multiplication)

 -x + 7 = (x - 3)(x - 1)

 - x + 7 =  {x}^{2}  - 3x - x +3 \\  - x + 7 =  {x}^{2}  - 4x + 3 \\  {x}^{2}  - 4x + x + 3 - 7 = 0 \\  {x}^{2}  - 3x</p><p>[tex] - 4 = 0

[/tex]

now,

we have to factorised it;

Splitting the middle term in such a way that it's sum equal to -3 and product equal to -4.

 {x}^{2}  - 4x + x - 4 \\ x(x - 4) + 1(x - 4)

(x - 4)(x + 1) = 0

so,

x - 4 = 0 \\ x = 4

or

x + 1 = 0 \\ x =  - 1

Similar questions