Math, asked by neetuthakur6248, 7 months ago

Math 9 Learning Task 2; A.translate the following verbal sentences to mathematical sentence.then express into quadratic equations in terms of "x" B.Solve for x:  \frac{1}{x} + \frac{1}{x + 10} = \frac{1}{10}

Answers

Answered by MaheswariS
1

\underline{\textsf{Given:}}

\mathsf{\dfrac{1}{x}+\dfrac{1}{x+10}=\dfrac{1}{10}}

\underline{\textsf{To find:}}

\textsf{Roots of the equation}

\underline{\textsf{Solution:}}

\mathsf{Consider,}

\mathsf{\dfrac{1}{x}+\dfrac{1}{x+10}=\dfrac{1}{10}}

\mathsf{\dfrac{x+10+x}{x(x+10)}=\dfrac{1}{10}}

\mathsf{\dfrac{2x+10}{x^2+10x}=\dfrac{1}{10}}

\mathsf{10(2x+10)=x^2+10x}

\mathsf{20x+100=x^2+10x}

\implies\boxed{\mathsf{x^2-10x-100=0}}

\textsf{We apply quadratic formula to find  the roots of the equation}

\boxed{\mathsf{x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}}}

\implies\mathsf{x=\dfrac{10\pm\sqrt{10^2-4{\times}1{\times}(-100)}}{2{\times}1}}

\implies\mathsf{x=\dfrac{10\pm\sqrt{100+400}}{2}}

\implies\mathsf{x=\dfrac{10\pm\sqrt{500}}{2}}

\implies\mathsf{x=\dfrac{10\pm\sqrt{100{\times}5}}{2}}

\implies\mathsf{x=\dfrac{10\pm10\sqrt{5}}{2}}

\implies\mathsf{x=5\pm5\sqrt{5}}

\therefore\mathsf{\bf\,Roots\;are\;5+5\sqrt{5}\;\;\&\;\;5-5\sqrt{5}}

\underline{\textsf{Find more:}}

Using the quadratic formula to solve 5x = 6x2 – 3, what are the values of x

https://brainly.in/question/14911682

Using the quadratic formula, solve the equation a square b square x square - (4b power 4-3apower4)x-12a square b square =0

https://brainly.in/question/5074987

A(x^2 + 1) = (a^2+ 1) x, a + 0 solve by formula method​

https://brainly.in/question/16238292

Similar questions