[math]abx^2=(a-b)^2(x+1)[/math]
[math]\implies \dfrac{ab}{(a+b)^2}=\dfrac{x+1} {x^2}[/math]
[math]\implies \dfrac{1}{x}+\dfrac{1} {x^2}=\dfrac{ab}{(a+b)^2}[/math]
[math]\implies \dfrac{4}{x}+\dfrac{4} {x^2}=\dfrac{{ab}{(a+b)^2}[/math]
[math]\implies 1+\dfrac{4}{x}+\dfrac{4} {x^2}=1+\dfrac{4ab}{(a-b)^2}[/math]
[math]\implies 1+\dfrac{4}{x}+\dfrac{4} {x^2}=\dfrac{(a-b)^2+4ab}{(a-b)^2}[/math]
[math]\implies 1+\dfrac{4}{x}+\dfrac{4} {x^2}=\dfrac{(a-b)^2+(a+b)^2-(a-b)^2}{(a-b)^2} [/math]
[math]\implies 1+\dfrac{4}{x}+\dfrac{4} {x^2}=\dfrac{(a+b)^2}{(a+b)^2}[/math]
[math]\implies 1+\dfrac{4}{x}+\dfrac{4} {x^2}=\left(\dfrac{a+b}{a-b}\riaht)^2[/math]
Answers
Answered by
1
Answer:
wow nice thinking
actually i didn't study and tomorrow is my CS exam . what to do .
plz mark me brainless i will think that i cold score good marks
Similar questions