Math, asked by arah2015, 1 year ago

math application of integrals question ​

Attachments:

Answers

Answered by Anonymous
29

Question :

Using integration, find the area of the triangle formed by positive x- axis and tangent and normal to the circle

 {x}^{2}  +  {y }^{2}  = 4 \:  \: at \: (1, \sqrt{3} )

Solution:

The given circle is

 {x}^{2}  +  {y }^{2}  = 4

Differentiate w.r.t.x

2x + 2y \frac{dy}{dx}  = 0 \\  \\  =  >  \frac{dy}{dx}  =  \frac{ - x}{y}

Slope of tangent at P (1,√3) = -1/√3

Slope of normal at P(1,√3)= √3

Therefore,

The equation of the tangent at P is :

y -  \sqrt{3}  =   - \frac{1 }{ \sqrt{3} } (x - y) \\  \\  =  > y =   - \frac{ 1}{ \sqrt{3} } x +  \sqrt{3}  +  \frac{1}{ \sqrt{3} }

This meets x-axis, where....

0 =  -  \frac{1}{3} x +  \sqrt{3}  +  \frac{1}{ \sqrt{3} }  \\  \\   =  > 0 =  - x + 3 + 1 \\  \\  =  > x = 4

Thus T is (4,0)

The equation of the normal at P is :

y -  \sqrt{3}  =  \sqrt{3} (x - 1) \\  \\ y =  \sqrt{3x}

This meets x-axis, y=0

Thus O is (0,0)

Now ar(△OPT)

= ar(OPL)+ar(PLT)

 =\int\limits_{0}^{1} \sqrt{3x}  \: dx + \int\limits_{1}^{4}( -  \frac{1}{ \sqrt{3} } x +  \sqrt{3}  +  \frac{1}{ \sqrt{3} } )dx \\  \\  =  \sqrt{3} \int\limits_{0}^{1}x \: dx -  \frac{1}{ \sqrt{3} } \int\limits_{1}^{4}x \: dx +( { \sqrt{3}  +  \frac{1}{ \sqrt{3} } } ) \int\limits_{1}^{4}(1)dx \\  \\  =  \sqrt{3} \:  \: [  \frac{ {x}^{2} }{2} ]limit0→1 \:  \:  -  \frac{1}{ \sqrt{3} } [  \frac{ {x}^{2} }{2} ]limit1→4 \:  \: +  \frac{3 + 1}{ \sqrt{3} }[   {x}^{2} ]limit1→4 \\  \\  =  \sqrt{3} ( \frac{1}{2}  - 0)  -  \frac{1}{ \sqrt{3} } (8 -  \frac{1}{2} ) +  \frac{4}{ \sqrt{3} } (4 - 1) \\  \\  =  \frac{ { \sqrt{3} } }{2}  -  \frac{8}{ \sqrt{3} }  +  \frac{1}{   2 \sqrt{3}   }  + 4 \sqrt{3}  \\  \\  =  \frac{9}{2}  \sqrt{3}  +  \frac{ - 16 + 1}{2 \sqrt{3} }  \\  \\  =  \frac{9}{2}  \sqrt{3}  -  \frac{15}{2 \sqrt{3} }  \\  \\  =  \frac{9}{2}  \sqrt{3}  -  \frac{5}{2}  \sqrt{3}  \\  \\  = ( \frac{9}{2}  -  \frac{5}{2} ) \sqrt{3}  \\  \\  = 2 \sqrt{3} sq \: units.

Attachments:
Similar questions