Math, asked by yash0025, 11 months ago



Math lovers plz answer this question ​

Attachments:

Answers

Answered by Anonymous
13

\Large{\underline{\underline{\mathfrak{\bf{Question}}}}}

Show that, \sf{\:(\csc \theta\:-\:\cot \theta)^2\:=\:\dfrac{(1-\cos \theta)}{(1+\cos \theta)}}

\Large{\underline{\underline{\mathfrak{\bf{Solution}}}}}

First take L.H.S.

\mapsto\sf{\:(\csc \theta\:-\:\cot \theta)^2} \\ \\ \small\sf{\orange{\:\:\:\csc \theta\:=\:\dfrac{1}{\sin \theta}\:\:and\:\:\cot \theta\:=\:\dfrac{\cos \theta}{\sin \theta}}} \\ \\ \sf{\:=\:\left(\dfrac{1}{\sin \theta}\:-\:\dfrac{\cos \theta}{\sin \theta}\right)^2} \\ \\ \sf{\:=\:\left(\dfrac{1-\cos \theta}{\sin \theta}\right)^2} \\ \\ \sf{\:=\:\dfrac{(1-\cos \theta)^2}{\sin^2 \theta}}

Now, Take R.H.S.

\mapsto\sf{\:\dfrac{(1-\cos \theta)}{(1+\cos \theta)}} \\ \\ \small\sf{\:\:\:\:\:Rationalized\:Denominators} \\ \\ \sf{\:=\:\dfrac{(1-\cos \theta)(1-\cos \theta)}{(1-\cos \theta)(1+\cos \theta)}} \\ \\ \sf{\:=\:\dfrac{(1-\cos \theta)^2}{(1-\cos^2 \theta)}} \\ \\ \small\sf{\orange{\:\:\:\:(1-\cos^2 \theta)\:=\:\sin^2 \theta}} \\ \\ \sf{\:=\:\dfrac{(1-\cos^2 \theta)}{\sin^2 \theta}}

By, first and second,

\mapsto\sf{\blue{\:\dfrac{(1-\cos \theta)^2}{\sin^2 \theta}\:=\:\dfrac{(1-\cos \theta)^2}{\sin^2 \theta}}}

L.H.S. = R.H.S.

That's proved.

Similar questions