Math, asked by BRAINLYxKIKI, 3 months ago

★ Math Problem !!

Let's make a rectangular garden of  \sf{\red{Length}} twice its \sf{\red{Breadth}} . The area of the Garden measures upto 800 m² . Check whether the given design is possible or not ?

‡ Don't Spam
‡ I will appreciate good answerers

Don't be hurry , answer in patience​

Answers

Answered by GK0786
17

Answer:

Sol. let length of rectangular garden = l m

and breadth of rectangular garden = b m

Ar. of rectangular garden = 800 m²

We know, Ar. of rectangle = l×b

According to question :

l = 2b

=> Ar. = 2b×b = 2b² m²

=> 800 = 2b²

=> b = 20m

=> l = 2×20 = 40m

So, given condition is possible if length = 40m and breadth = 20m

Answered by suraj5070
258

 \sf \bf \huge {\boxed {\mathbb {QUESTION}}}

 \tt Let's\: make \: a \:rectangular \: garden \: of {\sf{\red{Length}}}\:twice\\\tt its \: {\sf{\red{Breadth}}}. \:The \: area \: of \:the \: Garden \: measures\\\tt upto \: 800 \: {m}^{2}. \:Check \:whether \: the \: given \: design\\\tt is \: possible \: or \: not?

 \sf \bf \huge {\boxed {\mathbb {ANSWER}}}

 \sf \bf {\boxed {\mathbb {GIVEN}}}

  •  \bf Area \:of \:the \:garden(A) =800\:{m}^{2}
  •  \bf Length(l)\:of\:garden\:is\:twice\:the \:breadth(b) \:of\:the \:garden

 \sf \bf {\boxed {\mathbb {TO\:FIND}}}

  •  \bf The\: given\: design\: is \:possible\: or\: not \:to \:make\: a\: garden

 \sf \bf {\boxed {\mathbb {SOLUTION}}}

 {\pink {\underline {\bf {\pmb {Length \:and\:Breadth \:of\:the \:garden}}}}}

 {\orange {\mathfrak {Let,}}}

{\blue {\tt {\:  \:  \:  \:  \:  \:  \:Breadth(b) \: of \: the \: garden \: be \: x}}}

{\blue {\tt {\:  \:  \:  \:  \:  \:  \:Length(l) \: of \: the \: garden \: be \: 2x}}}

 \\

 {\orange {\boxed {\boxed {\boxed {\green {\pmb {A_{(Rectangle)}=l \times b}}}}}}}

  •  \sf A=area \:of \:the \:rectangle
  •  \sf l=length\:of \:the \:rectangle
  •  \sf b=breadth\:of \:the \:rectangle

 {\underbrace {\overbrace {\orange {\pmb {Substitute \:the \:values}}}}}

 \bf \implies 800=2x \times x

 \bf \implies 800=2{x}^{2}

 \bf \implies {x}^{2}=\dfrac{800}{2}

 \bf \implies {x}^{2}=\dfrac{\cancel{800}}{\cancel{2}}

 \bf \implies {x}^{2}=400

 \bf \implies x=\sqrt{400}

 \implies{\orange {\boxed {\boxed {\purple {\sf x=20\:m}}}}}

————————————————————————————

 {\tt {\blue {Breadth \:of \:the\: garden (b) =x}}}

 \implies {\orange {\boxed {\boxed {\purple {\mathfrak {b=20\:m}}}}}}

————————————————————————————

{\tt {\blue {Length \:of\: the\: garden (l) =2x}}}

 \bf \implies l=2 \times 20

 \implies {\orange {\boxed {\boxed {\purple {\mathfrak {l=40\:m}}}}}}

 \\

 {\underbrace {\red {\overline {\red {\underline {\red {\sf {\pmb {{\therefore} The\:given \:design \:is \: possible\:to\:make\:a\:garden \:when\:its\:breadth \:is\:20\:m\:and\:length \:is \:40\:m}}}}}}}}}

 \sf \bf \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU}}}

___________________________________________

 \sf \bf \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 \sf Area\:of \:the \:rectangle =l \times b

 \sf Perimeter \:of \:the \:rectangle =2(l+b)

 \sf Diagonall\:of \:the \:rectangle =\sqrt{{b}^{2}+{l}^{2}}

Similar questions