Math, asked by anusha12nair, 1 month ago

math question need answer asap
try to answer all 3 plz​

Attachments:

Answers

Answered by MysticSohamS
0

Answer:

hey here are your answers of jee mains

pls mark it as brainliest pls

Step-by-step explanation:

1. \\ so \: here \:  \\ x =  \gamma .sin \: θ.cosθ \\ y =  \gamma .sinθ.sinθ  =  \gamma .sin {}^{2} θ \\ z = cos  θ \\ so \: squaring \: all \: terms \: we \: get \\ x {}^{2}  =  \gamma  {}^{2} .sin {}^{2} θ.cos {}^{2} θ \\ y =  \gamma  {}^{2} .sin {}^{4} θ \\ z =  \gamma .cos {}^{2} θ \\ adding \: all \: terms \: we \: get \\ x {}^{2}  + y {}^{2}  + z {}^{2}  =  (\gamma  {}^{2} .sin {}^{2} θ.cos {}^{2} θ) + ( \gamma  {}^{2} .sin {}^{4} θ) + ( \gamma  {}^{2} .cos {}^{2} θ) \\  =  \gamma  {}^{2} (sin {}^{2} θ.cos {}^{2} θ + sin {}^{4} θ + cos {}^{2} θ) \\  =  \gamma  {}^{2} (sin {}^{2} θ(sin {}^{2} θ + cos {}^{2} θ) + cos {}^{2} θ) \\  =  \gamma  {}^{2} (sin {}^{2} θ(1) + cos   {}^{2} θ) \\  =  \gamma  {}^{2} (sin {}^{2}  + cos {}^{2} θ) \\  =  \gamma  {}^{2} (1) \\  =  \gamma  {}^{2}

3. \\ so \: tan \: 765 \: can \: be \: written \: as \: tan(720 + 45) \:  ie \: tan(4\pi +  \frac{\pi}{4} ) \\ so \: we \: know \: that \: whenever \: there \: is \: \pi \: in \: any \: trigonometric \: ratio \: there \: is \: no \: change \\ hence \: then \: tan \: 765 = tan \: 45 \\ so \: tan \: 45 = 1 \\ and \: as \: 765 \: lies \: un \: quadrant \: 1 the \: sign \: would \: not \: affect \: it \\ hence \: tan \: 765 \: ie \: tan( \frac{17\pi}{4} ) = 1

4. \\ so \: here \: 3 x= sec \: θ  \: ie \: x =  \frac{sec \:θ }{3} \\  \\  \frac{3}{x}  = tan \: θ \: ie \:  \frac{1}{x}  =  \frac{tan \: θ}{3}  \\  \\ so \: substituting \: these \: values \: in \: 9(x {}^{2}  -  \frac{1}{x {}^{2} } ) \\ we \: get \\ 9(x {}^{2}  -  \frac{1}{ {x}^{2} } ) = 9(( \frac{sec \:θ }{3} ) {}^{2}  - ( \frac{tan \: θ}{3} ) {}^{2} ) \\  = 9(  \frac{sec {}^{2}θ }{9}  -  \frac{tan {}^{2}θ }{9} ) \\  = 9( \frac{sec {}^{2}θ - tan {}^{2}  θ}{9} ) \\  = sec {}^{2}  - tan {}^{2} θ \\  = 1

5. \\ so \: here \:  \\ ( \frac{11}{cot {}^{2} θ}  -  \frac{11}{cos {}^{2} θ} ) \\ \\   = 11( \frac{1}{cot {}^{2} θ}  -  \frac{1}{cos {}^{2}θ } ) \\   \\  = 11(tan {}^{2} θ - sec {}^{2} θ) \\  = 11( - 1) \\  =  - 11

Similar questions