Math, asked by madeinindia12, 1 year ago

Math question. plz answer it.

a) \frac{1}{3 +  \sqrt{7} }  \\ \\  \\  \\  \\  b) \frac{5 +  \sqrt{5} }{7 +  \sqrt{3} }
? ? ? ? ? ?

Answers

Answered by Anonymous
9
Hola Mate!!

Your answer :-

a) =  >  \frac{1}{3 +  \sqrt{7} }  \\  \\  =  >  \frac{1}{3 +  \sqrt{7} }  \times  \frac{3 -  \sqrt{7} }{3 -  \sqrt{7} }  \\  \\  =  >  \frac{3 -  \sqrt{7} }{ {(3)}^{2}  -  {( \sqrt{7}) }^{2} }  \\  \\  =  >  \frac{3 -  \sqrt{7} }{9 - 7 }  \\  \\  =  >  \frac{3 -  \sqrt{7} }{2}  \\  \\ b) =  >  \frac{5 +  \sqrt{5} }{7 +  \sqrt{3} }  \\  \\  =  >  \frac{5 +  \sqrt{5} }{7 +  \sqrt{3} }  \times   \frac{7 -  \sqrt{3} }{7 -  \sqrt{3} }  \\  \\  =  >  \frac{(5 +  \sqrt{5})(7 -  \sqrt{3})  }{ {(7)}^{2} -  {( \sqrt{3}) }^{2}  }  \\  \\  =  >  \frac{5(7 -  \sqrt{3}) +  \sqrt{5}  (7 -  \sqrt{3} )}{49 - 3}  \\  \\  =  >  \frac{35 - 5 \sqrt{3 }  + 7 \sqrt{5} -  \sqrt{15}  }{46}  \\  \\

☆ Hope it helps ☆
Answered by chhajedchirag1p32bb2
6

 \frac{1}{3 +  \sqrt{7} }  \\  \frac{1}{3 +  \sqrt{7} }  \times  \frac{3 -  \sqrt{7} }{3 -  \sqrt{7} }  \\  \frac{3 -  \sqrt{7} }{3 {}^{2}  -  \sqrt{7 {}^{2} } }  \\  \frac{3 -  \sqrt{7} }{2}
2.
 \frac{5 +  \sqrt{5} }{7 +  \sqrt{3} } \times  \frac{7 -  \sqrt{3} }{7 -  \sqrt{3} }   \\  \frac{5(7 -  \sqrt{3}) +  \sqrt{5}(7 -  \sqrt{3})   }{7 {}^{2} - 3 }  \\  \frac{35 - 5 \sqrt{3} + 7 \sqrt{5} -  \sqrt{15}   }{49 - 3}   \\  \frac{35 - 5 \sqrt{3} + 7 \sqrt{5} -  \sqrt{15}   }{46}
hope this helps you
don't forget to do it brainleist.
Similar questions