Math, asked by sajjadursayem, 5 months ago

math
given  \:  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 10 \\ x = what

Answers

Answered by jaidansari248
1

Answer:

 {x}^{2}  +  \frac{1}{ {x}^{2} }  = 10 \:  \: ......(i) \\ add \: 2 \: (or \: 2 \times x \times  \frac{1}{x} ) \: to \: both \: side \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2x \times  \frac{1}{x}  = 10  +  2 \\  {(x +  \frac{1}{x}) }^{2}  = 12 \\ x +  \frac{1}{x}  =  \frac{ + }{}  \sqrt{12}  =  \frac{ + }{}2 \sqrt{3}   \:  \: ......(ii) \\ subract \: 2 \: (or \: 2x  \times  \frac{1}{x} ) \: from \: both \: side \: of \: eq(i) \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  - 2x \times  \frac{1}{x}  = 10 - 2 \\ (x -  \frac{1}{x} ) {}^{2}  = 8 \\ x -  \frac{1}{x}  =  \frac{ + }{}  \sqrt{8}  =  \frac{ + }{} 2 \sqrt{2}  \:  \: .......(iii) \\ add \: eq(ii) \: and \: (iii) \: we \: get \\ (x +  \frac{1}{x} ) + (x -  \frac{1}{x} ) =(  \frac{ + }{} 2 \sqrt{3})   + \: ( \frac{ + }{} 2 \sqrt{2} ) \\ 2x =  \frac{ + }{} 2 \sqrt{3}  \frac{ + }{  } 2 \sqrt{2}  \\ x   = \frac{  \frac{ + }{} 2 \sqrt{3}  \frac{ + }{  } 2 \sqrt{2}}{2}  \\ there \: are \: four \: value \: of \:  :  \\ x _{1} =  \frac{ + 2 \sqrt{3}  + 2 \sqrt{2} }{2}  =  \sqrt{3}  +  \sqrt{2}  \\ x _{2} =  \frac{ - 2 \sqrt{3} - 2 \sqrt{2}  }{?}  =  - ( \sqrt{3}  +  \sqrt{2} ) \\ x _{3}  =  \frac{2 \sqrt{3} - 2 \sqrt{2}  }{2}  =  \sqrt{3}  -  \sqrt{2}  \\ x _{4}  =  \frac{ - 2 \sqrt{3} + 2 \sqrt{2}  }{2}  =  -  \sqrt{3}  +  \sqrt{2}

Answered by mohit762161
1

Answer:

 {x}^{2}   +   \frac{1}{ {x}^{2} }  = 10 \\  {x}^{2} +  1 = 10 \times  {x}^{2}  \\  {x}^{2}  + 1 = 10 {x}^{2}  \\ {x}^{2}  - 10 {x}^{2}    =  - 1 \\ ( - 9 {x}^{2} ) = ( - 1) \\ ( - 3 {x})^{2}  = ( { - 1})^{2}  \\   - 3x =  - 1  \\   3x = 1

Similar questions