Math, asked by Anonymous, 3 months ago

Mathematics:
1) If \bf{\frac{{a}^{3}+{3ab}^{2}}{{3a}^{2}b+{b}^{3}}=\frac{{c}^{3}+{3cd}^{2}}{{3c}^{2}d+{d}^{3}}}, then show that a, b, c and d are in proportion.

*Spam answers will be reported
*Correct answer will be appreciated :)​

Answers

Answered by CɛƖɛxtríα
67

{\underline{\underline{\bf{Required\:solution:}}}}

\sf{Given,}

\large\underline{\boxed{\sf{\frac{{a}^{3}+{3ab}^{2}}{{3a}^{2}b+{b}^{3}}=\frac{{c}^{3}+{3cd}^{2}}{{3c}^{2}d+{d}^{3}}}}}

\sf{Applying\:componendo\:and\:dividendo,}

\implies\large{\sf{ \frac{( {a}^{3} +  {3ab}^{2}) + ( {3a}^{2}   b +  {b}^{3} )}{( {a}^{3} +  {3ab}^{2})  -  ( {3a}^{2}   b +  {b}^{3} )} = \frac{( {c}^{3}  +  {3cd}^{2}) + ( {3c}^{2}  d +  {d}^{3} )}{( {c}^{3}  +  {3cd}^{2})  -  ( {3c}^{2}  d +  {d}^{3})} }}

\implies\large{\sf{ \frac{ {a}^{3} +  {b}^{3} + 3ab(a + b)  }{ {a}^{3} -  {b}^{3} - 3ab(a - b)  } = \frac{ {c}^{3} +  {d}^{3} + 3cd(c + d)  }{ {c}^{3} -  {d}^{3}  - 3cd(c - d) } }}

\implies\large{\sf{ \frac{ {(a + b)}^{3} }{ {(a - b)}^{3} } =  \frac{ {(c + d)}^{3} }{ {(c - d)}^{3} }  }}

\implies\large{\sf{ \frac{a + b}{a - b}  =  \frac{c + d}{c - d} }}

\sf{Again,\: applying\:componendo\:and\:dividendo,}

\implies\large{\sf{ \frac{(a + b) + (a - b)}{(a + b)  -  (a - b)}  = \frac{(c + d) + (c - d)}{(c + d)  -  (c - d)} }}

\implies\large{\sf{ \frac{2a}{2b}  =  \frac{2c}{2d}}}

\implies\underline{\boxed{\sf{\red{ \frac{a}{b}  =  \frac{c}{d} }}}}

\:\:

\therefore\underline{\sf{a,\:b,\:c\:and\:d\:\:are\:in\: proportion.}}

____________________________________


Anonymous: Sorry, i had reported your answer by mistake. If you're answer gets deleted, kindly get it back with the help of moderators. I am really sorry.
Anonymous: And thank you very much, your answer is awesome
CɛƖɛxtríα: Oops, itz okie
Anonymous: I am really sorry
Anonymous: Great !
CɛƖɛxtríα: Thnx :)
Anonymous: Exclusive!
CɛƖɛxtríα: Thnku :)
renuchaudhary70799: hlo
Similar questions