Math, asked by ItzBrainlyVOID, 7 days ago

Mathematics class 9
Question-
1. The angles of a Quadrilateral are in ratio 3:5:9:13. Find all angles
2. Show that if the diagonals of a Quadrilateral bisect each other at right angles, then it is a rhombus.
Please step wise step​

Answers

Answered by karishmakasarlawar51
11

3:5:9:13

⇒3x+5x+9x+13x

=360

50x=360

x=12

angle = 36

60 ∘

60∘

108∘

156∘

Step-by-step explanation:

Hope that helps you

Mark my answer in brainlist please:)

Attachments:
Answered by ItzBrainlyLords
24

 \huge \star \:  \underline{ \underline{ \red{ \sf \: solution: }}} \\

Question 1.

⍟ Given :

Raito :

  • 3:5:9:13

⍟ To Find :

  • All angles
  • For this , let the angle be = x

⍟ On Solving :

Angles :

  • 3x
  • 5x
  • 9x
  • 13x

Angle Sum Property of Quadrilateral

= 360°

 \\  \large \tt \implies \: 3x + 5x + 9x + 13x = 360 \degree \\  \\  \large \implies \tt \: 30x = 360 \degree \\  \\  \\  \large \tt \implies \: x =  \frac{360 \degree}{30}  \\  \\   \\ \large \star \:  \:  \underline{ \boxed{ \sf   \pink{\therefore \: \: x = 12 \degree}}} \:  \:  \star \\  \\

So, the angles are :

  \\  \large \mapsto \:  \underline{ \purple{ \sf \: angle_1 = 3(12 \degree) } =  \green{ \: 36 \degree}} \\ \\  \large \mapsto \:  \underline{ \purple{ \sf \: angle_2 = 5(12 \degree) } =  \green{ \: 60\degree}} \\ \\  \large \mapsto \:  \underline{ \purple{ \sf \: angle_3 = 9(12 \degree) } =  \green{ \: 108 \degree}} \\ \\  \large \mapsto \:  \underline{ \purple{ \sf \: angle_4 = 13(12 \degree) } =  \green{ \: 156 \degree}} \\  \\

_____________________________________________

⍟ Given :

Let ABCD be a Quadrilateral, where diagonals bisect each other

 \\  \large \therefore \:  \: oa

Similar questions