mathematics question solve it
Answers
Answer:
let a =(p-q)
b=(q-r)
c =(r-p)
a+b+c = p-q+q-r+r-p
= p-p-q+q+r-r
= 0
when a++b+c =0
a³ + b³ + c³ = 3abc
( p - q )³ + ( q - r )³ + ( r - p )³
= 3(p-q)(q-r)(r-p)
Answer:
Step-by-step explanation:
Method 1:
Use identities:
Add and subtract 3pqr
You can also use identity
If a+b+c = 0
~~~~~~~~~THIS PART IS BY @mistycd~~~~~~~~~~
a³+b³+c³-3abc
a³+b³+c³-3abc= (a+b+c)(a²+b²+c²-ab-bc-ca)
LHS = a³+b³+c³-3abc
= (a³+b³)+c³-3abc
= (a+b)³-3ab(a+b)+c³-3abc
By algebraic identity:
x³+y³+3xy(x+y)=(x+y)³
=> x³+y³ = (x+y)³-3xy(x+y) */
= [(a+b)³+c³]-3ab(a+b)-3abc
=[(a+b+c)³-3(a+b)c(a+b+c)]-3ab(a+b+c)
=(a+b+c)[(a+b+c)²-3(a+b)c-3ab]
=(a+b+c)[a²+b²+c²+2ab+2bc+2ca-3ac-3bc-3ab]
=(a+b+c)(a²+b²+c²-ab-bc-ca)
= RHS
Therefore,
a³+b³+c³-3abc
= (a+b+c)(a²+b²+c²-ab-bc-ca)
Now if a + b + c = 0
Then a³+b³+c³-3abc = 0
a³+b³+c³ = 3abc
~~~~~~~~~THIS PART WAS BY @mistycd~~~~~~~~~~
Full credit for the proof of a³+b³+c³ = 3abc goes to @mysticd
{https://brainly.in/question/2773736}
Thus you can simply substitute
a = p-q
b = q-r
c = r-p
and get the required answer
Might help thanks!