Math, asked by parthivpreythush2476, 2 months ago

mathematics rd sharma​

Attachments:

Answers

Answered by assingh
101

Question :-

Solve for 'x'.

\dfrac{x-1}{x-2}+\dfrac{x-3}{x-4}=3\dfrac{1}{3};\:x\neq2,4

Solution :-

\dfrac{x-1}{x-2}+\dfrac{x-3}{x-4}=3\dfrac{1}{3}

\dfrac{x-1}{x-2}+\dfrac{x-3}{x-4}=\dfrac{(3\times3)+1}{3}

\dfrac{(x-1)(x-4)+(x-3)(x-2)}{(x-2)(x-4)}=\dfrac{9+1}{3}

\dfrac{x^2-x-4x+4+x^2-3x-2x+6}{x^2-2x-4x+8}=\dfrac{10}{3}

\dfrac{x^2+x^2-x-4x-3x-2x+6+4}{x^2-2x-4x+8}=\dfrac{10}{3}

\dfrac{2x^2-10x+10}{x^2-6x+8}=\dfrac{10}{3}

Cross Multiplying,

3(2x^2-10x+10)=10(x^2-6x+8)

6x^2-30x+30=10x^2-60x+80

10x^2-6x^2-60x+30x+80-30=0

4x^2-30x+50=0

2(2x^2-15x+25)=0

2x^2-15x+25=0

Factorising it using Splitting method,

2x^2-10x-5x+25=0

2x(x-5)-5(x-5)=0

(x-5)(2x-5)=0

So,

x-5=0

x=5

and

2x-5=0

2x=5

x=\dfrac{5}{2}

Answer :-

So,value\:of\:\bold{x=5, \dfrac{5}{2}}.


Asterinn: Perfect! ( ꈍᴗꈍ)
Similar questions