Math, asked by Anonymous, 1 year ago

#MATHEMATICS

If \: tan \theta \: + \frac{1}{tan\theta} = 2\\ find: \\ (1)sin\theta + cos\theta \\ (2)sec\theta + tan\theta

Answers

Answered by Anonymous
20

\underline{\mathsf{\green{Answer:-}}}

\green{\boxed{\mathsf{ \pink{sin\theta} + \red{cos \theta} = \orange{\sqrt{2} }}}}

\blue{\boxed{\mathsf{ \pink{sec \theta }+ \red{tan \theta} = \orange{\sqrt{2}+1}}}}

\underline{\mathsf{\green{Explanation:-}}}

\underline{\mathsf{\red{Given:-}}}

 \mathsf{\: tan \theta \: + \dfrac{1}{tan\theta} = 2}

\underline{\mathsf{\pink{To \: Find :-}}}

\mathsf{ (1) sin \theta + cos\theta }

 (2)\mathsf{sec \theta + tan\theta }

\underline{\mathsf{\blue{Solution:-}}}

 \mathsf{\: tan \theta \: + \dfrac{1}{tan\theta} = 2}

 \mathsf{ \dfrac{{tan}^{2} \theta+1}{tan\theta} = 2}

 \mathsf{ {tan}^{2} \theta+1 = 2tan \theta}

 \mathsf{ {tan}^{2} \theta - 2tan \theta+1 = 0}

 \mathsf{ {tan}^{2} \theta-tan \theta - tan\theta +1 = 0}

 \mathsf{  tan \theta(tan\theta -1) - 1(tan\theta -1) = 0}

 \mathsf{  (tan\theta -1) (tan\theta -1) = 0}

 \mathsf{  tan \theta = 1}

Therefore,

 \pink{\boxed{\red{\mathsf{   \theta = 45 \degree}} }}

Now,

\mathsf{ \pink{(1) sin\theta + cos\theta} }

\mathsf{ \implies sin\theta + cos\theta }

\mathsf{ \implies sin 45 \degree + cos 45 \degree}

\mathsf{ \implies \dfrac{1}{\sqrt{2}} + \dfrac{1}{\sqrt{2}} }

\mathsf{ \implies \dfrac{2}{\sqrt{2}} }

\blue{\boxed{\red{\mathsf{  \sqrt{2} }}}}

\mathsf{ \red{(2)sec\theta + tan\theta}}

\mathsf{ \implies sec\theta + tan\theta }

\mathsf{ \implies sec 45\degree+ tan 45 \degree}

\blue{\boxed{\pink{\mathsf{ \sqrt{2}+1}}}}

#\mathsf{ \blue{Aravind}\:  \red{Reddy! }}...


Anonymous: Colorfully written
Anonymous: Well answer
Anonymous: :)
Answered by Anonymous
5

Answer:

Hey mate please refer to the attachment

this answer is not same as previous answer

here we used

1 + tan^2 theta= sec^2 theta

ans ,sin 2 theta= 2 sin theta.cos theta

hope u will not deleted this before see this.

Attachments:
Similar questions