mathematics
trigonometry
Attachments:
Answers
Answered by
1
Given :-
Cosec(A) - Sin(A) = x
Sec(A) - Cos(A) = y
To Prove :-
(x²y)⅔ + (xy²)⅔ = 1
Solution :-
So, Cosec(A) - Sin(A) = x
→ 1/Sin(A) - Sin(A) = x
→ (1 - Sin²A)/Sin(A) = x
→ Cos²A/Sin(A) = x
→ Cot(A).Cos(A) = x __________( i )
And, Sec(A) - Cos(A) = y
→ 1/Cos(A) - Cos(A) = y
→ (1 - Cos²A)/Cos(A) = y
→ Sin²A/Cos(A) = y
→ tan(A).Sin(A) = y ___________( i )
Now,
LHS = (x²y)⅔ + (xy²)⅔
LHS = [{Cot²A. Cos²A}.{tan(A).Sin(A)}]⅔ + [{tan²A. Sin²A}.{Cot(A).Cos(A)}]⅔
LHS = (Cos³A)⅔ + (Sin³)⅔
LHS = Sin²A + Cos²A = 1 = RHS
Hence PROVED _________"'
Hope it helps...
^____°
Similar questions