Math, asked by Arceus02, 7 months ago

#Maths Aryabhattas only
Open challenge. [Co-ordinate geometry]
The length of perpendicular from origin to line lx + my + n = 0 is ?
[Ans. \sf{\frac{ |n| }{ \sqrt{ {l}^{2}   + {m}^{2}}}}

Answers

Answered by shadowsabers03
6

Suppose we're asked to find the perpendicular distance of a point \sf{P(x_1,\ y_1)} from the line \sf{Ax+By+C=0} having positive intercepts as shown in the figure.

\setlength{\unitlength}{1mm}\begin{picture}(5,5)\thicklines\put(0,0){\vector(1,0){50}}\put(0,0){\vector(0,1){50}}\put(15,15){\vector(-1,1){25}}\put(15,15){\vector(1,-1){25}}\put(8,8){\circle*{1}}\put(8,8){\line(1,1){7}}\multiput(8,8)(4,0){4}{\line(1,0){2}}\multiput(8,8)(0,4){4}{\line(0,1){2}}\scriptsize\put(2,4.5){$\sf{P(x_1,\ y_1)}$}\put(23,9){$\sf{Q(h,y_1)}$}\put(9,23){$\sf{R(x_1,\ k)}$}\qbezier(14,14)(14.5,13.5)(15,13)\qbezier(15,13)(15.5,13.5)(16,14)\put(13,-6){$\sf{Ax+By+C=0}$}\put(51,-3){\sf{X}}\put(-3,51){\sf{Y}}\put(-3,-3){\sf{O}}\multiput(8,22)(14,-14){2}{\circle*{1}}\put(16,15){\sf{S}}\put(10,12){\sf{d}}\end{picture}

Let a line parallel to x axis be drawn from P to our line and meet it at the point Q.

Since P and Q lie on a line parallel to x axis, y coordinates of P and Q are same.

Let the x coordinate of P be h and so the coordinates of Q is \sf{(h,\ y_1).}

Since Q is a point on our line, we have,

\sf{\longrightarrow Ah+By_1+C=0}

\sf{\longrightarrow h=-\dfrac{By_1+C}{A}}

Since \sf{h>x_1,} length of PQ is, by distance formula,

\sf{\longrightarrow PQ=h-x_1}

Putting value of h,

\sf{\longrightarrow PQ=-\dfrac{By_1+C}{A}-x_1}

\sf{\longrightarrow PQ=-\dfrac{Ax_1+By_1+C}{A}}

Let a line parallel to y axis be drawn from P to our line and meet it at the point R.

Since P and R lie on a line parallel to y axis, x coordinates of P and R are same.

Let the y coordinate of P be k and so the coordinates of R is \sf{(x_1,\ k).}

Since R is a point on our line, we have,

\sf{\longrightarrow Ax_1+Bk+C=0}

\sf{\longrightarrow k=-\dfrac{Ax_1+C}{B}}

Since \sf{k>y_1,} length of PR is, by distance formula,

\sf{\longrightarrow PR=k-y_1}

Putting value of k,

\sf{\longrightarrow PR=-\dfrac{Ax_1+C}{B}-y_1}

\sf{\longrightarrow PR=-\dfrac{Ax_1+By_1+C}{B}}

Now consider ΔPQR.

By Pythagoras' Theorem, length of QR,

\sf{\longrightarrow QR=\sqrt{(PQ)^2+(PR)^2}}

\sf{\longrightarrow QR=\sqrt{\left(-\dfrac{Ax_1+By_1+C}{A}\right)^2+\left(-\dfrac{Ax_1+By_1+C}{B}\right)^2}}

\sf{\longrightarrow QR=\sqrt{(Ax_1+By_1+C)^2\left(\dfrac{1}{A^2}+\dfrac{1}{B^2}\right)}}

\sf{\longrightarrow QR=\sqrt{(Ax_1+By_1+C)^2\left(\dfrac{A^2+B^2}{A^2B^2}\right)}}

\sf{\longrightarrow QR=\dfrac{|Ax_1+By_1+C|}{|AB|}\sqrt{A^2+B^2}}

But, the slope of this line, \sf{m=-\dfrac{A}{B}} is negative as it makes obtuse angle with positive x axis.

\sf{\longrightarrow -\dfrac{A}{B}<0}

\sf{\longrightarrow \dfrac{A}{B}>0}

This implies A and B have same sign, and so,

\sf{\longrightarrow AB>0}

Therefore,

\sf{\longrightarrow |AB|=AB}

Thus,

\sf{\longrightarrow QR=\dfrac{|Ax_1+By_1+C|}{AB}\sqrt{A^2+B^2}}

In ΔPQR, PS is the altitude drawn from P to QR at S. It's length is \sf{d} which is given by,

\sf{\longrightarrow d=\dfrac{PQ\cdot PR}{QR}}

\sf{\longrightarrow d=\dfrac{-\dfrac{Ax_1+By_1+C}{A}\cdot-\dfrac{Ax_1+By_1+C}{B}}{\dfrac{|Ax_1+By_1+C|}{AB}\sqrt{A^2+B^2}}}

\sf{\longrightarrow d=\dfrac{AB(Ax_1+By_1+C)^2}{AB|Ax_1+By_1+C|\sqrt{A^2+B^2}}}

\sf{\longrightarrow\underline{\underline{d=\dfrac{|Ax_1+By_1+C|}{\sqrt{A^2+B^2}}}}}

We get the same final result in the case of line having,

  • positive x intercept and negative y intercept.
  • negative x intercept and positive y intercept.
  • negative x and y intercepts.

though there are some differences.

In the question,

  • \sf{(x_1,\ y_1)=(0,\ 0)}
  • \sf{Ax+By+C=lx+my+n=0}

Then, length of perpendicular from origin to this line is,

\sf{\longrightarrow d=\dfrac{|Ax_1+By_1+C|}{\sqrt{A^2+B^2}}}

\sf{\longrightarrow d=\dfrac{|l(0)+m(0)+n|}{\sqrt{l^2+m^2}}}

\sf{\longrightarrow\underline{\underline{d=\dfrac{|n|}{\sqrt{l^2+m^2}}}}}

Answered by Anonymous
3

Given ,

The equation of line is

  • lx + my + n = 0

On comparing with general equation of line ax + by + c = 0 we , get

  • a = l
  • b = m
  • c = n

We know that , the perpendicular distance from the origin to line ax + by + c = 0 is given by

 \boxed{ \tt{P =   \frac{ |c| }{ \sqrt{ {(a)}^{2} +  {(b)}^{2}  } }  }}

Thus ,

 \tt \implies p =   \frac{ |n| }{ \sqrt{ {(l)}^{2} +  {(m)}^{2}  } }

Learn More :

The perpendicular distance of a point (x1 , y1) from a line is given by -

 \boxed{ \tt{D =  \frac{ |a x_{1} + by_{1}   + c|}{ \sqrt{ {(a)}^{2}  +  {(b)}^{2} } } }}

The distance between two parrallel lines is given by -

 \boxed{ \tt{D =  \frac{ | c_{2} -  c_{1}  | }{ \sqrt{ {(a)}^{2} +  {(b)}^{2}  } } }}

__________________ Keep Smiling

Similar questions