Math, asked by shwetahooda47, 2 months ago

maths chapter 2 of class 9 th ex 2.4 question no 4,5​

Answers

Answered by nkumar49628
2

Step-by-step explanation:

Question 4.

Factorise

(i) 12x2 – 7x +1

(ii) 2x2 + 7x + 3

(iii) 6x2 + 5x – 6

(iv) 3x2 – x – 4

Solution:

(i) We have,

12x2 – 7x + 1 = 12x2 – 4x- 3x + 1

= 4x (3x – 1 ) -1 (3x – 1)

= (3x -1) (4x -1)

Thus, 12x2 -7x + 3 = (2x – 1) (x + 3)

(ii) We have, 2x2 + 7x + 3 = 2x2 + x + 6x + 3

= x(2x + 1) + 3(2x + 1)

= (2x + 1)(x + 3)

Thus, 2×2 + 7x + 3 = (2x + 1)(x + 3)

(iii) We have, 6x2 + 5x – 6 = 6x2 + 9x – 4x – 6

= 3x(2x + 3) – 2(2x + 3)

= (2x + 3)(3x – 2)

Thus, 6x2 + 5x – 6 = (2x + 3)(3x – 2)

(iv) We have, 3x2 – x – 4 = 3x2 – 4x + 3x – 4

= x(3x – 4) + 1(3x – 4) = (3x – 4)(x + 1)

Thus, 3x2 – x – 4 = (3x – 4)(x + 1)

Question 5.

Factorise

(i) x3 – 2x2 – x + 2

(ii) x3 – 3x2 – 9x – 5

(iii) x3 + 13x2 + 32x + 20

(iv) 2y3 + y2 – 2y – 1

Solution:

(i) We have, x3 – 2x2 – x + 2

Rearranging the terms, we have x3 – x – 2x2 + 2

= x(x2 – 1) – 2(x2 -1) = (x2 – 1)(x – 2)

= [(x)2 – (1)2](x – 2)

= (x – 1)(x + 1)(x – 2)

[∵ (a2 – b2) = (a + b)(a-b)]

Thus, x3 – 2x2 – x + 2 = (x – 1)(x + 1)(x – 2)

(ii) We have, x3 – 3x2 – 9x – 5

= x3 + x2 – 4x2 – 4x – 5x – 5 ,

= x2 (x + 1) – 4x(x + 1) – 5(x + 1)

= (x + 1)(x2 – 4x – 5)

= (x + 1)(x2 – 5x + x – 5)

= (x + 1)[x(x – 5) + 1(x – 5)]

= (x + 1)(x – 5)(x + 1)

Thus, x3 – 3x2 – 9x – 5 = (x + 1)(x – 5)(x +1)

(iii) We have, x3 + 13x2 + 32x + 20

= x3 + x2 + 12x2 + 12x + 20x + 20

= x2(x + 1) + 12x(x +1) + 20(x + 1)

= (x + 1)(x2 + 12x + 20)

= (x + 1)(x2 + 2x + 10x + 20)

= (x + 1)[x(x + 2) + 10(x + 2)]

= (x + 1)(x + 2)(x + 10)

Thus, x3 + 13x2 + 32x + 20

= (x + 1)(x + 2)(x + 10)

(iv) We have, 2y3 + y2 – 2y – 1

= 2y3 – 2y2 + 3y2 – 3y + y – 1

= 2y2(y – 1) + 3y(y – 1) + 1(y – 1)

= (y – 1)(2y2 + 3y + 1)

= (y – 1)(2y2 + 2y + y + 1)

= (y – 1)[2y(y + 1) + 1(y + 1)]

= (y – 1)(y + 1)(2y + 1)

Thus, 2y3 + y2 – 2y – 1

= (y – 1)(y + 1)(2y +1)

Similar questions
Math, 10 months ago