Math, asked by arsh123465, 7 months ago

maths chapter :- speed ,distance and time question number 5,6,7,8 plz help me​

Attachments:

Answers

Answered by Anonymous
8

Question :

How long will it take a bus travelling at 48 km/h to cover a distance of 360 m.

Given :

  • Speed = 48 km/h

  • Distance = 360 m

To find :

Time Taken to cover the given distance.

Solution :

First let us convert the speed from km/h to m/s.i.e

\bf{:\implies v = 48 km/h} \\ \\

\bf{:\implies v = \bigg(48 \times \dfrac{5}{18}\bigg)m} \\ \\

\bf{:\implies v = 13.33 (approx) m }\\ \\

Hence, the speed of the bus is 13.33 m.

Now using the formula for speed and substituting the values in it, we get :

:\implies \bf{Speed\:(v) = \dfrac{Distance\:(d)}{Time\:(t)}} \\ \\ \\

:\implies \bf{13.33 = \dfrac{360}{t}} \\ \\ \\

:\implies \bf{t = \dfrac{360}{13.33}} \\ \\ \\

:\implies \bf{t = 27(approx.)} \\ \\ \\

\boxed{\therefore \bf{Time\:taken\:(t) = 27\:s} }\\ \\ \\

Hence, the time taken is 27 s.

Question :

A car covers 200 km in 4½ hrs and then another 240 km in 3½ hours . Find it's average speed.

Given :

  • Distance s_{1} = 200 km

  • Distance s_{2} = 200 km

  • Time t_{1} = 4½ hrs or 9/2 hours

  • Time t_{2} = 3½ hours or 7/2 hours

To find :

The average speed of the car.

Solution :

Using the formula for average speed of an object and substituting the values in it, we get :

:\implies \bf{Average\:Speed\:(v) = \dfrac{Total\:Distance\:(d)}{Total\:Time\:(t)}} \\ \\ \\

:\implies \bf{v = \dfrac{s_{1} + s_{2}}{t_{1} + t_{2}}} \\ \\ \\

:\implies \bf{v = \dfrac{200 + 240}{\dfrac{9}{2} + \dfrac{7}{2}}} \\ \\ \\

:\implies \bf{v = \dfrac{440}{\dfrac{9 + 7}{2}}} \\ \\ \\

:\implies \bf{v = \dfrac{440}{\dfrac{16}{2}}} \\ \\ \\

:\implies \bf{v = \dfrac{440}{16} \times 2} \\ \\ \\

:\implies \bf{v = \dfrac{440}{16} \times 2} \\ \\ \\

:\implies \bf{v = \dfrac{880}{16}} \\ \\ \\

:\implies \bf{v = 55} \\ \\ \\

\boxed{\therefore \bf{Average\:speed = 55\:km h^{-1}}} \\ \\ \\

Hence, the average speed of the car is 55 km/h

Question :

A truck travels at 40 km/h for 3 h and 35 km/h for 2 h. Find it's average speed.

Given :

  • Speed v_{1} = 40 km/h
  • Speed v_{2} = 35 km/h

  • Distance t_{1} = 3 hours

  • Distance t_{2} = 2hours

To find :

The average speed of the truck.

Solution :

Let us find the distance covered by the truck in both the journeys .

Formula used :-

:\implies \bf{Speed\:(v) = \dfrac{Distance\:(d)}{Time\:(t)}} \\ \\ \\

Distance covered :

  • For the first journey :

:\implies \bf{40 = \dfrac{d_{1}}{3}} \\ \\ \\

:\implies \bf{40 \times 3 = d_{1}} \\ \\ \\

:\implies \bf{120 = d_{1}} \\ \\ \\

\underline{\therefore \bf{d_{1} = 120\:km}} \\ \\ \\

Hence, the Distance traveled in first journey is 120 km.

  • For the second journey :

:\implies \bf{35 = \dfrac{d_{2}}{2}} \\ \\ \\

:\implies \bf{35 \times 2 = d_{2}} \\ \\ \\

:\implies \bf{70 = d_{2}} \\ \\ \\

\underline{\therefore \bf{d_{2} = 70\:km}} \\ \\ \\

Hence, the Distance traveled in second journey is 70 km.

Average speed :

:\implies \bf{v = \dfrac{d_{1} + d_{2}}{t_{1} + t_{2}}} \\ \\ \\

:\implies \bf{v = \dfrac{120 + 70}{3 + 2}} \\ \\ \\

:\implies \bf{v = \dfrac{190}{5}} \\ \\ \\

:\implies \bf{v = 38} \\ \\ \\

\boxed{\therefore \bf{Average\:speed = 38\:km h^{-1}}} \\ \\ \\

Hence, the average speed of the car is 38 km/h.

Question :

A man walks 6 km at 12 km/h and returns at 10 km/h. Find his average speed.

Given :

  • Distance = 6 km (Here distance will be same in both the cases)

  • Speed v_{1} = 12 km/h
  • Speed v_{2} = 10 km/h

To find :

The average speed of the whole Journey.

Solution :

Let us find the time taken by the man in both the journeys.

Formula used :-

:\implies \bf{Speed\:(v) = \dfrac{Distance\:(d)}{Time\:(t)}} \\ \\ \\

Time Taken :

  • For the first Journey :

:\implies \bf{12 = \dfrac{6}{t_{1}}} \\ \\ \\

:\implies \bf{t_{1} = \dfrac{6}{12}} \\ \\ \\

:\implies \bf{t_{1} = 0.5} \\ \\ \\

\underline{\therefore \bf{t_{1} = 0.5}} \\ \\ \\

Hence, the time taken for the first journey is 0.5 s.

  • For the second Journey :

:\implies \bf{10 = \dfrac{6}{t_{2}}} \\ \\ \\

:\implies \bf{t_{2} = \dfrac{6}{10}} \\ \\ \\

:\implies \bf{t_{2} = 0.6} \\ \\ \\

\underline{\therefore \bf{t_{2} = 0.6}} \\ \\ \\

Hence, the time taken for the second journey is 0.6 s.

Average speed :

:\implies \bf{v = \dfrac{d_{1} + d_{2}}{t_{1} + t_{2}}} \\ \\ \\

:\implies \bf{v = \dfrac{6 + 6}{0.5 + 0.6}} \\ \\ \\

:\implies \bf{v = \dfrac{12}{1.1}} \\ \\ \\

:\implies \bf{v = 10.9(approx)} \\ \\ \\

\boxed{\therefore \bf{Average\:speed = 10.9\:km h^{-1}}} \\ \\ \\

Hence, the average speed of the car is 10.9 km/h

Answered by Anonymous
8

Answer:

5.

Given Parameters :

  • Speed = 48 km/hr = 48 × 5/18 m/s
  • Distance = 360 m

Unknown :

  • Time taken = ?

Solution :

:\implies \sf Speed = \dfrac{Distance}{Time} \\  \\

:\implies \sf Time = \dfrac{Distance}{Speed} \\  \\

:\implies \sf Time = \dfrac{360}{48 \times  \dfrac{5}{18} } \\  \\

:\implies \sf Time = \dfrac{360 \times 18}{48 \times 5} \: \: \: \Bigg\lgroup \bf{\because Apply \: the \: Fraction \: rule : \dfrac{a}{\frac{b}{c}} = \frac{a \times c}{b} }\Bigg\rgroup\\  \\

:\implies \sf Time = \dfrac{6480}{240} \\  \\

:\implies  \underline{ \boxed{\sf Time = 27  \: seconds }} \\  \\

\therefore\underline{\textsf {Time taken by the bus is \textbf{27 seconds}}}.

_________________....

6.

\bigstar \: \underline{\:\large{\sf{For \: First \: \textit {200} \: km :}}} \\

\bullet\:\:\textsf{Distance = \textbf{200 km}} \\

\bullet\:\:\textsf{Time at which the first 200 km distance was covered = 4  $\dfrac{1}{2}$  hr = \textbf{  $\dfrac{9}{2} $ hr}} \\

\bigstar \: \underline{\:\large{\sf{For \: Next \: \textit {240} \: km :}}} \\

\bullet\:\:\textsf{Distance = \textbf{240 km}} \\

\bullet\:\:\textsf{Time at which the next 240 km distance was covered = 3  $\dfrac{1}{2}$  hr = \textbf{  $\dfrac{7}{2} $ hr}} \\

\underline{\boldsymbol{According\: to \:the\: Question\:now :}}

\dashrightarrow\:\:\sf Average \: Speed = \dfrac{Total \: Distance}{Total \: Time \: taken} \\ \\ \\

\dashrightarrow\:\:\sf Average \: Speed = \dfrac{200 + 240}{ \dfrac{9}{2}  +  \dfrac{7}{2} } \\ \\ \\

\dashrightarrow\:\:\sf Average \: Speed = \dfrac{440}{8} \\ \\ \\

\dashrightarrow\:\: \underline{ \boxed{\textsf{ \textbf{Average \: Speed = 55 km/hr}}}} \\ \\ \\

\therefore\underline{\textsf {Average Speed will be \textbf{55 km/hr}}}.

___________________....

7.

\bigstar \: \underline{\:\large{\sf{For \: First \: \textit {40} \: km :}}} \\

\bullet\:\:\textsf{Distance = \textbf{40 km}} \\

\bullet\:\:\textsf{Time at which the first 40 km distance was covered = \textbf{3 hr}} \\

\bigstar \: \underline{\:\large{\sf{For \: Next \: \textit {35} \: km :}}} \\

\bullet\:\:\textsf{Distance = \textbf{35 km}} \\

\bullet\:\:\textsf{Time at which the first 35 km distance was covered = \textbf{2 hr}} \\

\underline{\boldsymbol{According\: to \:the\: Question\:now :}}

\dashrightarrow\:\:\sf Average \: Speed = \dfrac{Total \: Distance}{Total \: Time \: taken} \\ \\ \\

\dashrightarrow\:\:\sf Average \: Speed = \dfrac{40 + 35}{3 + 2} \\ \\ \\</p><p>

 \dashrightarrow\:\:\sf Average \: Speed = \dfrac{75}{5} \\ \\ \\</p><p>

\dashrightarrow\:\: \underline{ \boxed{\textsf{ \textbf{Average \: Speed = 15 km/hr}}}} \\ \\ \\

\therefore\underline{\textsf {Average Speed will be \textbf{15 km/hr}}}.

_________________.....

8.

Case (I) :

Distance = 6 km

Speed = 12 km/hr

  • As we know that Distance is equals to the Speed into time :]

➝ Distance = Speed × Time

➝ 6 = 12 × Time

➝ Time = 6/12

Time = ½ hours

Case (II) :

Distance = 6 km

Speed = 10 km/hr

➝ Distance = Speed × Time

➝ 6 = 10 × Time

➝ Time = 6/10

Time = ⅗ hours

\underline{\boldsymbol{According\: to \:the\: Question\:now :}}

\dashrightarrow\:\:\sf Average \: Speed = \dfrac{Total \: Distance}{Total \: Time \: taken} \\ \\ \\

\dashrightarrow\:\:\sf Average \: Speed = \dfrac{6 + 6}{ \dfrac{1}{2} +  \dfrac{3}{5}  } \\ \\ \\

\dashrightarrow\:\:\sf Average \: Speed = \dfrac{12}{ \dfrac{5 + 6}{10 } } \\ \\ \\

\dashrightarrow\:\:\sf Average \: Speed = \dfrac{12}{ \frac{11}{10 } } \\ \\ \\

\dashrightarrow\:\:\sf Average \: Speed = \dfrac{12 \times 10}{ 11} \: \: \: \Bigg\lgroup \bf{\because Apply \: the \: Fraction \: rule : \dfrac{a}{\frac{b}{c}} = \frac{a \times c}{b} }\Bigg\rgroup \\ \\ \\

\dashrightarrow\:\:\sf Average \: Speed = \dfrac{120}{ 11} \\ \\ \\

\dashrightarrow\:\: \underline{ \boxed{\textsf{ \textbf{Average \: Speed = 10.91 km/hr}}}} \\ \\ \\

\therefore\underline{\textsf {Average Speed will be \textbf{10.91 km/hr}}}.

Similar questions