Maths class 8 exercise 3.2 solutions please
Answers
Exercise 3.2
Question 1:
- Find
- x in the following figures:
125° + m = 180° ⇒ m = 180° – 125° = 55° (Linear pair)
125° + n = 180° ⇒ n = 180° – 125° = 55° (Linear pair)
x = m + n (exterior angle of a triangle is equal to the sum of 2 opposite interior 2 angles)
⇒ x = 55° + 55°
⇒ x = 110°
b)
Two interior angles are right angles = 90°
70° + m = 180° ⇒ m = 180° – 70° = 110° (Linear pair)
60° + n = 180° ⇒ n = 180° – 60° = 120° (Linear pair) The figure is having five sides and is a pentagon.
Thus, sum of the angles of pentagon = 540° 90° + 90° + 110° + 120° + y = 540°
⇒ 410° + y = 540° ⇒ y = 540° – 410° = 130°
x + y = 180° (Linear pair)
⇒ x + 130° = 180°
⇒ x = 180° – 130°
⇒ x = 50°
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
2. Find the measure of each exterior angle of a regular polygon of
- (i) 9 sides (ii) 15 sides Solution:
Sum of angles a regular polygon having side n = (n-2)×180°
(i) Sum of angles a regular polygon having side 9 = (9-2)×180°= 7×180° = 1260°
Each interior angle=1260/9 = 140°
Each exterior angle = 180° – 140° = 40°
Or,
Each exterior angle = sum of exterior angles/Number of angles = 360/9 = 40°
(ii) Sum of angles a regular polygon having side 15 = (15-2)×180°
= 13×180° = 2340°
Each interior angle = 2340/15 = 156°
Each exterior angle = 180° – 156° = 24°
Or,
Each exterior angle = sum of exterior angles/Number of angles = 360/15 = 24°
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
3. How many sides does a regular polygon have if the measure of an exterior angle is 24°? Solution:
Each exterior angle = sum of exterior angles/Number of angles
- 24°= 360/ Number of sides
⇒ Number of sides = 360/24 = 15
Thus, the regular polygon has 15 sides.
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
4. How many sides does a regular polygon have if each of its interior angles is 165°? Solution:
Interior angle = 165°
Exterior angle = 180° – 165° = 15°
Number of sides = sum of exterior angles/ exterior angles
⇒ Number of sides = 360/15 = 24
Thus, the regular polygon has 24 sides.
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
5.
- a) Is it possible to have a regular polygon with measure of each exterior angle as 22°?
- b) Can it be an interior angle of a regular polygon? Why?
Solution:
a) Exterior angle = 22°
Number of sides = sum of exterior angles/ exterior angle
⇒ Number of sides = 360/22 = 16.36
- No, we can’t have a regular polygon with each exterior angle as 22° as it is not divisor of 360.
b) Interior angle = 22°
Exterior angle = 180° – 22°= 158°
- No, we can’t have a regular polygon with each exterior angle as 158° as it is not divisor of 360.
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
6.
- a) What is the minimum interior angle possible for a regular polygon? Why?
- b) What is the maximum exterior angle possible for a regular polygon?
Solution:
- a) Equilateral triangle is a regular polygon with 3 sides has the least possible minimum interior angle because the regular with minimum sides can be constructed with 3 sides at least. Since, sum of interior angles of a triangle = 180°
Each interior angle = 180/3 = 60°
b) Equilateral triangle is a regular polygon with 3 sides has the maximum exterior angle because the regular polygon with least number of sides have the maximum exterior angle possible. Maximum exterior possible = 180 – 60° = 120°
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Quadrilateral
Parallelogram:
A quadrilateral with each pair of opposite sides parallel.
Properties
- (1) Opposite sides are equal.
- (2) Opposite angles are equal.
- (3) Diagonals bisect one another.
Rhombus:
A parallelogram with sides of equal length.
Properties
- (1) All the properties of a parallelogram.
- (2) Diagonals are perpendicular to each other.
Rectangle:
A parallelogram with a right angle.
Properties
- (1) All the properties of a parallelogram.
- (2) Each of the angles is a right angle.
- (3) Diagonals are equal.
Square:
A rectangle with sides of equal length.
Properties
- All the properties of a parallelogram,
- rhombus and a rectangle.
Kite:
A quadrilateral with exactly two pairs of equal consecutive sides .
Properties
- (1) The diagonals are perpendicular
- to one another.
- (2) One of the diagonals bisects the other.
- (3) In the figure m∠B = m∠D but
- m∠A ≠ m∠C.
Quadrilateral
Parallelogram:
A quadrilateral with each pair of opposite sides parallel.
Properties
(1) Opposite sides are equal.
(2) Opposite angles are equal.
(3) Diagonals bisect one another.
Rhombus:
A parallelogram with sides of equal length.
Properties
(1) All the properties of a parallelogram.
(2) Diagonals are perpendicular to each other.
Rectangle:
A parallelogram with a right angle.
Properties
(1) All the properties of a parallelogram.
(2) Each of the angles is a right angle.
(3) Diagonals are equal.
Square:
A rectangle with sides of equal length.
Properties
All the properties of a parallelogram,
rhombus and a rectangle.
Kite:
A quadrilateral with exactly two pairs of equal consecutive sides .
Properties
(1) The diagonals are perpendicular
to one another.
(2) One of the diagonals bisects the other.
(3) In the figure m∠B = m∠D but
m∠A ≠ m∠C.