Math, asked by Yuseong, 5 hours ago

Maths, Class 9th.

If x⁶ — y⁶ = z⁶, then prove that log\sf _z(x² — y²) + log[tex \sf _z[/tex](x² + y² − xy) + log\sf _z(x² + y² +
xy) = 6.

Answers

Answered by PARIAAS
3

Answer:

x^6-y^6=z^6

Step-by-step explanation:

= (x^3)^2-(y^3)^2 =z^6

= (x^3-y^3) (x^3+y^3)=z^6

= (x-y) (x^2+xy+x^2) (x+y) (x^2-xy+y^2) =z^6

Answered by anindyaadhikari13
24

\textsf{\large{\underline{Solution}:}}

Given That:

 \rm:\longmapsto {x}^{6}  -  {y}^{6}  =  {z}^{6}

 \rm:\longmapsto ({x}^{3})^{2}   -  ({y}^{3})^{2}   =  {z}^{6}

Using identity a² - b² = (a + b)(a - b), we get:

 \rm:\longmapsto ({x}^{3} +  {y}^{3} )( {x}^{3}  -  {y}^{3})  =  {z}^{6}

 \rm:\longmapsto (x + y)( {x}^{2} - xy +  {y}^{2})(x - y)( {x}^{2} + xy +  {y}^{2}   ) =  {z}^{6}

 \rm:\longmapsto ( {x}^{2} -  {y}^{2})  ( {x}^{2} - xy +  {y}^{2})( {x}^{2} + xy +  {y}^{2}   ) =  {z}^{6}

Taking log on both sides, we get:

 \rm:\longmapsto  log_{z}[( {x}^{2} -  {y}^{2})  ( {x}^{2} - xy +  {y}^{2})( {x}^{2} + xy +  {y}^{2})]=   log_{ z }{ \: z}^{6}

We know that:

 \rm:  \longmapsto log(abc..)  =  log(a) +  log(b) +  log(c) + ...

Therefore:

 \rm:\longmapsto  log_{z}[{x}^{2} -  {y}^{2}] +  log_{z}[{x}^{2} - xy +  {y}^{2}] +  log[{x}^{2} + xy +  {y}^{2}]=   log_{ z }{ \: z}^{6}

 \rm:\longmapsto  log_{z}[{x}^{2} -  {y}^{2}] +  log_{z}[{x}^{2} - xy +  {y}^{2}] +  log[{x}^{2} + xy +  {y}^{2}]=  6 log_{ z }{z}

 \rm:\longmapsto  log_{z}[{x}^{2} -  {y}^{2}] +  log_{z}[{x}^{2} - xy +  {y}^{2}] +  log[{x}^{2} + xy +  {y}^{2}]=  6

Hence Proved..!!

\textsf{\large{\underline{More To Know}:}}

 \rm 1. \:  \:  {a}^{n} = b \implies log_{a}(b)  = n

 \rm 2. \:  \: log_{a}(1)  = 0, \: a \neq0,1

 \rm 3. \:  \: log_{a}(a)  = 1, \: a \neq0,1

 \rm 4. \:  \: log_{a}(x)  = log_{a}(y) \implies x = y

 \rm 5. \:  \: log_{e}(x) =  ln(x)

 \rm6. \:  \:  log_{a}(x) + log_{a}(y) = log_{a}(xy)

 \rm7. \:  \:  log_{a}(x) - log_{a}(y) = log_{a} \bigg( \dfrac{x}{y} \bigg)

 \rm 8. \:  \: log_{a}( {x}^{n} ) =  n\log_{a}(x)

 \rm 9. \:  \:  log_{a}(m) =  \dfrac{ log_{b}(m) }{ log_{b}(a) },m > 0,b > 0,a \ne1,b \ne1

 \rm 10. \:  \: log_{a}(b) = \dfrac{1}{ log_{b}(a) }


anindyaadhikari13: Thanks for the brainliest :)
Similar questions