Math, asked by Berseria, 2 days ago

Maths : Equations.
.​

Attachments:

Answers

Answered by amansharma264
15

EXPLANATION.

α, β be the roots of the equation.

⇒ 2x² - 4x - 3 = 0.

As we know that,

Sum of the zeroes of the quadratic polynomial.

⇒ α + β = - b/a.

⇒ α + β = - (-4/2).

⇒ α + β = 2.

Products of the zeroes of the quadratic polynomial.

⇒ αβ = c/a.

⇒ αβ = (-3/2).

To find :

The value of : α² + β².

As we know that,

Formula of :

⇒ (x² + y²) = (x + y)² - 2xy.

Using this formula in the equation, we get.

⇒ α² + β² = (α + β)² - 2αβ.

Put the values in the equation, we get.

⇒ α² + β² = (2)² - 2(-3/2).

⇒ α² + β² = 4 + 3.

⇒ α² + β² = 7.

Option [B] is correct answer.

                                                                                                                 

MORE INFORMATION.

Conjugate roots.

(1) = If D < 0.

One roots = α + iβ.

Other roots = α - iβ.

(2) = If D > 0.

One roots = α + √β.

Other roots = α - √β.

Answered by geniusranksinghmohan
9

Step-by-step explanation:

given :

  • If alpha & beta be the roots of the equation 2x2−4x−3=0 , the value of α2+β2

to find :

  • 2x2−4x−3=0 , the value of α2+β2

solution :

  • Sum of roots = p + q = -b/a

  • Product of roots = p * q = c/a

  • In the given equation,

  • p+q=-(-4)/2 = 2

  • p* q = -3/2

  • p² +q² = [p² + q² + 2pq] — 2pq = (p+q)² - - 2pq (2)² – 2 * (-3/2) = 4+3 = 7

answer :

  • the answer 7
Attachments:
Similar questions