Physics, asked by Bll1074, 1 month ago

Maths Experts Please Do it
#Help Needed

The first term of an arithmetic progression of consecutive integers is k² + 1. The sum of 2k + 1 terms of this progression may be expressed as
(1) k³ + (k + 1)³
(2) (k-1)³+ k³
(3) (K + 1)³
(4) (k + 1)²

Spamming fully allowed ​

Answers

Answered by devukhushu2008
1

this is answer pls support me

Attachments:
Answered by llAngelsnowflakesll
1

Given :-

For an arithmetic progression of consecutive integers :

First Term = k² + 1.

-----------------------

♣ To Find :-

Sum of 2k + 1 Terms

-----------------------

♣ Formula for Sum :-

If an A.P contains n terms then such is n terms is given by :

\large \mathtt{S_n = \dfrac{n}{2} \bigg \{2a + (n - 1)d \bigg \} }S

n

=

2

n

{2a+(n−1)d}

Where ,

a = First Term

d = Common Difference

-----------------------

♣ Solution :-

Here ,

a = k² + 1

d = 1 ( A.P. is consecutive Integers)

n = 2k + 1

Hence By Formula For Sum ;

\begin{gathered}\sf{Sum = \dfrac{2k + 1}{2} } \bigg \{ \sf{2( {k}^{2} + 1) +( 2k + 1 - 1)1 }\bigg \} \\ \\ \large \sf{ = \frac{2k + 1}{2} \bigg(2k {}^{2} + 2 + 2k \bigg) } \\ \\ \large\sf{ = (2k + 1)( {k}^{2} + k + 1)} \\ \\ \large\sf{ =2k^3+2k^2+2k+k^2+k+1 }\\ \\ \large \sf{=2k^3+3k^2+3k+1} \\ \\ \large \sf{ = {k}^{3} + ( {k}^{3} + 1 + 3 {k}^{2} + 3k)} \\ \\ \pink{ \Large \bf = {k}^{3} + ( {k + 1)}^{3} }\end{gathered}

Sum=

2

2k+1

{2(k

2

+1)+(2k+1−1)1}

=

2

2k+1

(2k

2

+2+2k)

=(2k+1)(k

2

+k+1)

=2k

3

+2k

2

+2k+k

2

+k+1

=2k

3

+3k

2

+3k+1

=k

3

+(k

3

+1+3k

2

+3k)

=k

3

+(k+1)

3

\underline{ \underline{ \purple {\pmb{\mathcal{Hence \: \: Option \: \: 1 \: \: is \: \: Correct} }}}}

HenceOption1isCorrect

HenceOption1isCorrect

\begin{gathered}\Large \red{\mathfrak{  \text{W}hich \:   \: is  \:  \: the  \:  \: required} }\\ \huge \red{\mathfrak{ \text{ A}nswer.}}\end{gathered}

Which  is  the  required

Answer.

-----------------------

Similar questions