Math, asked by nancy359, 1 month ago

Maths experts please solve:-

No spam

Attachments:

Answers

Answered by abhinavkr01
2

(i)

 \frac{sin \:  {70}^{0} }{cos \:  {20}^{0} }  +  \frac{cosec \:  {36}^{0} }{sec \:  {54}^{0} }  -  \frac{2cos \:  {43}^{0} \: cosec \:  {47}^{0}  }{tan \:  {10}^{0}  \: tan \:  {40}^{0} \:  tan \:  {50}^{0}  \: tan \:  {80}^{0}  }

Using the formula,

sin (90° - θ) = cos θ

tan (90° - θ) = cot θ

sec (90° - θ) = cosec θ

Now,

 \frac{sin \: ( {90}^{0} -  {20}^{0})}{cos \:  {20}^{0} }  +  \frac{cosec \: ( {90}^{0}  -  {54}^{0} )}{sec \:  {54}^{0} }  -  \frac{2cos \:  {43}^{0} cosec \: ( {90}^{0} -  {43}^{0} ) }{tan \: ( {90}^{0}  -  {80}^{0} ) \: tan \:  {80}^{0} \:  tan\:({90}^{0} - {40}^{0})\: tan\: {40}^{0}}  \\  \frac{cos {20}^{0} }{cos \:  {20}^{0} }  +  \frac{sec \:  {54}^{0} }{sec \:  {54}^{0} }  -  \frac{2cos \:  {43}^{0} \: sec \:   {43}^{0} }{cot\: {80}^{0}\: tan\: {80}^{0}\:cot\:{40}^{0}\:tan{40}^{0}}

After solving,

1 + 1 - 2 = 0

(ii)

cos 15° = cos (45° - 30°)

= cos 45° cos 30° + sin 45° sin 30°

= 1/√2*√3/2 + 1/√2*1/2

= √3/2√2 + 1/2√2

= (√3 + 1) / 2√2

sin 15° = sin (45° - 30°)

= sin 45° cos 30° - cos 45° sin 30°

= 1/√2*√3/2 - 1/√2*1/2

= √3/2√2 - 1/2√2

= (√3 - 1) / 2√2

Hope It Helps :)

Similar questions