Math, asked by avinashsingh48, 1 year ago

maths legend

please help​

Attachments:

Answers

Answered by Anonymous
3

Answer:

A+B= \frac{\pi }{4}

Step-by-step explanation:

Sin \: A = \frac{1}{\sqrt{10}}

\implies Cos\:A = \sqrt{1 - Sin^{2}A }

\implies \: \: \: \: \: \:  = \sqrt{1 - \frac{1}{10} }

\implies \: \: \: \: \: \: = \sqrt{\frac{10 - 1}{10} }

\implies \: \: \: \: \: \: = \sqrt{\frac{9}{10} }

\implies \: \: \: \: \: \: = \frac{3}{\sqrt{10} }

Sin \: B = \frac{1}{\sqrt{5}}

\implies Cos\:B = \sqrt{1 - Sin^{2}B }

\implies \: \: \: \: \: \:= \sqrt{1 - \frac{1}{5} }

\implies \: \: \: \: \: \: = \sqrt{\frac{5 - 1}{5} }

\implies \: \: \: \: \: \: = \sqrt{\frac{4}{5} }

\implies \: \: \: \: \: \: = \frac{2}{\sqrt{5} }

Since,\: Sin(A+B) = Sin\:A\:Cos B + Cos\:A\:Sin\:B

\:\:\:\:\:\:\:\:\:\:\:\: = \frac{1}{\sqrt{10}}*\frac{2}{\sqrt{5}} + \frac{3}{\sqrt{10}}*\frac{1}{\sqrt{5}}

= \frac{2}{\sqrt{50} } + \frac{3}{\sqrt{50} }

= \frac{5}{\sqrt{50} }

= \frac{5}{5\sqrt{2} }

= \frac{1}{\sqrt{2} }

Sin(A+B) = \frac{1}{\sqrt{2} }

\implies A+B= \frac{\pi }{4}

Answered by vivo29
1

Answer is in attachment

thank you

Attachments:
Similar questions