Math, asked by usename, 1 year ago

maths legends need help .....​

Attachments:

Answers

Answered by littlestarb054
15

Mathematical Induction

We are given a statement which we are supposed to prove by the Principle of Mathematical Induction.

Let the statement be P(n).

\displaystyle\sf P(n): \left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right)\dots\left(1+\frac{2n+1}{n^2}\right)=(n+1)^2

Checking P(1):

\begin{array}{l|l}\mathbb{LHS}&\mathbb{RHS}\\\cline{1-2}&\\\\\ = 1+\dfrac{3}{1}& = (1+1)^2\\\\ = 4 & = 4 \end{array}

Thus, P(1) is true.

Suppose P(k) is true.

\displaystyle\sf \implies\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right)\dots\left(1+\frac{2k+1}{k^2}\right)=(k+1)^2 \quad \textsf{-----(1)}

We now need to check for P(k+1).

To Prove:

\displaystyle\sf\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right)\dots\left(1+\frac{2(k+1)+1}{(k+1)^2}\right)=((k+1)+1)^2

Consider the LHS:

\displaystyle\sf\mathbb{LHS}\\\\\\ =\underbrace{\sf\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right)\dots\left(1+\frac{2k+1}{k^2}\right)}_\textsf{Use Result (1)}\left(1+\frac{2(k+1)+1}{(k+1)^2}\right)\\\\\\ = \cancel{(k+1)^2} \left(\frac{(k+1)^2+2(k+1)+1)}{\cancel{(k+1)^2}}\right)\\\\\\ \textsf{Use the identity: }a^2+2ab+b^2=(a+b)^2\\\\\\ = ((k+1)+1)^2\\\\\\ = \mathbb{RHS}

Thus, P(k+1) is true provided P(k) is true.

Now, P(1) is true and P(k) is true \implies P(k+1) is true.

Hence, P(n) is true for all \sf n\in\mathbb{N}.

Similar questions