Math, asked by pratyushi1998, 11 months ago

Maths lovers ... i want to test you.. solve it fast​

Attachments:

Answers

Answered by Anonymous
5

answer\:  \:  \:  \\  let \:  \:  \: theta \:  \:  =  \alpha   \\  \\ given \:  \:  \:  \:  \cos( \alpha )  =  \frac{8}{17}  \\  \\  \cos( \frac{\pi } {6 }  +  \alpha )  +  \cos( \frac{\pi}{4}  -  \alpha )   +  \cos( \frac{2\pi}{3}  -  \alpha )  =  \beta  \:  \: let \\  \\  \beta  =  \cos( \alpha ) ( \cos( \frac{\pi}{4}  )  +  \cos( \frac{\pi}{6} ) +  \cos( \frac{2\pi}{3} )  )  +  \sin( \alpha ) ( \sin( \frac{2\pi}{3} )  +  \sin( \frac{\pi}{4} )   -  \sin( \frac{\pi}{6} ) ) \\  \\  \beta  =  \cos( \alpha ) ( \frac{1}{ \sqrt{2} }  +  \frac{ \sqrt{3} }{2}  -  \frac{1}{2} )  +   \sin( \alpha )(  \frac{ \sqrt{3} }{2}    +  \frac{1}{ \sqrt{2} }  -  \frac{1}{2} ) \\  \\  \beta  =   \frac{( \sqrt{3}  - 1)}{2}  +  \frac{1}{ \sqrt{2} } ( \cos( \alpha )    +   \sin( \alpha ) ) \\  \\  \beta  =  \frac{( \sqrt{3}  - 1)}{ \sqrt{2} }  +  \frac{1}{ \sqrt{2} } ( \frac{8}{17}   +  \frac{15}{17} ) \\  \\  \beta  =  \frac{( \sqrt{3}  - 1)}{2}  +  \frac{1}{ \sqrt{2} } ( \frac{ 23}{17)}  \\  \\  \\ note \:  \:  \:  \:  \:  \:  \:  \\  \cos( \alpha  +  \beta ) =  \cos( \alpha )   \cos( \beta )  -  \sin( \alpha )  \sin( \beta )  \\   \cos( \alpha  -  \beta )  =  \cos( \alpha )  \cos( \beta )  +  \sin( \alpha )  \sin( \beta )  \\and \\   \cos( \frac{2\pi}{3} )  =  \frac{ - 1}{2}

Similar questions