Math, asked by priyanshu7777, 1 year ago

Maths lovers ......
One more challenge for you !

Attachments:

Answers

Answered by Anonymous
7

Answer \:  \\  \\ Given \:  \: Quadratic \:  \: Polynomial \: is \: \\  \\ p(x) = ax {}^{2}   + bx + c \\  \\ let \: its \: two \: zeroes \: be \:  \:  \:  \alpha  \:  \:  \: and \:  \:  \beta  \\  \\  \alpha  +  \beta  =  \frac{ - b}{a}  \:  \:  \: and \:  \:  \:  \:  \alpha  \beta  =  \frac{c}{a}  \\  \\ RECIPROCAl \:  \: Of \:  \: these \: zeroes \: are \\  \\  \frac{1}{ \alpha }  \:  \:  \:  \: and \:  \:  \:  \:  \frac{1}{ \beta }  \\  \\  \frac{1}{ \alpha }  +  \frac{1}{ \beta }  =  \frac{ \alpha  +  \beta }{  \alpha \beta }  \\  \\   \frac{1}{ \alpha }  +  \frac{1}{ \beta }  =  \frac{ \frac{ - b}{a} }{ \frac{c}{a} }  \\  \\  \frac{1  }{ \alpha }  +  \frac{1}{ \beta }  =   \frac{ - b}{c}  \:  \:  \:  \:  \:  \:  \:  \: and \:  \:  \:  \:  \frac{1}{ \alpha }  \times  \frac{1}{ \beta }  =  \frac{1}{ \frac{c}{a} }  =  \frac{a}{c}  \\  \\ let \: the \: Required \: Quadratic \: polynomial \: be \:  \:  \\ f(x) \\  \\ f(x) = x {}^{2}  - ( \frac{1}{ \alpha }  +  \frac{1}{ \beta } )x +  \frac{1}{ \alpha  \beta }  \\  \\ f(x) = x {}^{2}  - ( \frac{ - b}{c} )x +   \frac{a}{c} \\  \\ f(x) = x {}^{2}  + ( \frac{b}{c} )x +  \frac{a}{c}  \\  \\ therefore \:  \: required \: quadratic \: polynomial \: is \:  \:  \\  \\ x {}^{2}  + ( \frac{b}{c} )x +  \frac{a}{c}  \\ and \:  \: required \: quadratic \: equation \: is \:  \:  \\  \\ x {}^{2}  + ( \frac{b}{c} )x +  \frac{a}{c}  = 0 \\  \\  \\ Note \:  \\  \\ for \: a \: general \: quadratic \: polynomial \:  \\ say \:  \: g(x) = px {}^{2}  + qx + v \\  \\  \alpha  +  \beta  =  \frac{ - q}{p}  \:  \:  \:  \: and \:  \:  \:  \:  \alpha  \beta  =  \frac{v}{p}


priyanshu7777: thank you so much bro
Similar questions