Math, asked by atzya, 19 days ago

maths polynomials....​

Attachments:

Answers

Answered by tennetiraj86
14

Answer:

Option (B)

Step-by-step explanation:

Given :-

x+(1/x) = 5

To find :-

The value of (x⁴+1)/x²

Solution :-

Given that

x+(1/x) = 5

On squaring both sides then

=> [x+(1/x)]² = 5²

=> x²+2(x)(1/x)+(1/x)² = 5×5

Since, (a+b)² = +2ab+

Where, a = x and b = 1/x

=> x²+2(x/x) +(1/x²) = 25

=> x²+2(1) +(1/x²) = 25

=> x²+2+(1/x²) = 25

=> x²+(1/x²) +2 = 25

=> x²+(1/x²) = 25-2

=> x²+(1/x²) = 23

=> [(x²×x²)+1]/x² = 23

=> (x⁴+1)/x² = 23

Answer :-

The value of (x⁴+1)/ is 23

Used formulae:-

(a+b)² = +2ab+

Answered by diwanamrmznu
12

 \implies x +  \frac{1}{x}  = 5  -  - (1)\\  \\  \\  \implies \: \frac{x {}^{4}  + 1}{x {}^{2} }  \\  \\  \implies \:  \frac{x {}^{ \cancel{4}} }{x {}^{ \cancel{2}} }  +  \frac{1}{x {}^{2} }  \\  \\  \\ \implies \:  {x}^{2}  +  \frac{1}{ {x}^{2} }  -  -  - (2) \\  \\  \eq \: 1 \: square \: both \: side \\  \\  \\ \implies \:   {x}^{2}  + ( \frac{1}{x}) {}^{2}  + 2. \cancel{x. \frac{1}{1}} =  {5}^{2}    \\  \\  \\  \implies \:  {x}^{2}  +  \frac{1}{x {}^{2} }  =25 - 2 \\  \\  \\    \implies \:    {x}^{2} + \frac{1}{ {x}^{2} }  = 23

______________________________

option b is correct✅✔

__________________________

thanks

Similar questions