Math, asked by mithun4339, 8 months ago

Maths probability chapter extra questions

Answers

Answered by avanisharma1979
3

Answer:

..

Q. 2: A bag contains a red ball, a blue ball and a yellow ball, all the balls being

of the same size. Kritika takes out a ball from the bag without looking into it. What is

the probability that she takes out the

(i) yellow ball?

(ii) red ball?

(iii) blue ball?

Solution:

Kritika takes out a ball from the bag without looking into it. So, it is equally likely that she takes out any one of them from the bag.

Let Y be the event ‘the ball taken out is yellow’, B be the event ‘the ball taken

out is blue’, and R be the event ‘the ball taken out is red’.

The number of possible outcomes = Number of balls in the bag = n(S) = 3.

(i) The number of outcomes favourable to the event Y = n(Y) = 1.

So, P(Y) = n(Y)/n(S) =1/3

Similarly, (ii) P(R) = 1/3

and (iii) P(B) = ⅓answer

Q.3: One card is drawn from a well-shuffled deck of 52 cards. Calculate the probability that the card will

(i) be an ace,

(ii) not be an ace.

Solution:

Well-shuffling ensures equally likely outcomes.

(i) Card drawn is an ace

There are 4 aces in a deck.

Let E be the event ‘the card is an ace’.

The number of outcomes favourable to E = n(E) = 4

The number of possible outcomes = Total number of cards = n(S) = 52 ()

Therefore, P(E) = n(E)/n(S) = 4/52 = 1/13

(ii) Card drawn is not an ace

Let F be the event ‘card drawn is not an ace’.

The number of outcomes favourable to the event F = n(F) = 52 – 4 = 48

Therefore, P(F) = n(F)/n(S) = 48/52 = 12/13 answer

Q.4: Two dice are numbered 1, 2, 3, 4, 5, 6 and 1, 1, 2, 2, 3, 3, respectively. They are thrown and the sum of the numbers on them is noted. Find the probability of getting each sum from 2 to 9 separately.

Solution:

Number of total outcome = n(S) = 36

(i) Let E1 be the event ‘getting sum 2’

Favourable outcomes for the event E1 = {(1,1),(1,1)}

n(E1) = 2

P(E1) = n(E1)/n(S) = 2/36 = 1/18

(ii) Let E2 be the event ‘getting sum 3’

Favourable outcomes for the event E2 = {(1,2),(1,2),(2,1),(2,1)}

n(E2) = 4

P(E2) = n(E2)/n(S) = 4/36 = 1/9

(iii) Let E3 be the event ‘getting sum 4’

Favourable outcomes for the event E3 = {(2,2)(2,2),(3,1),(3,1),(1,3),(1,3)}

n(E3) = 6

P(E3) = n(E3)/n(S) = 6/36 = 1/6

(iv) Let E4 be the event ‘getting sum 5’

Favourable outcomes for the event E4 = {(2,3),(2,3),(4,1),(4,1),(3,2),(3,2)}

n(E4) = 6

P(E4) = n(E4)/n(S) = 6/36 = 1/6

(v) Let E5 be the event ‘getting sum 6’

Favourable outcomes for the event E5 = {(3,3),(3,3),(4,2),(4,2),(5,1),(5,1)}

n(E5) = 6

P(E5) = n(E5)/n(S) = 6/36 = 1/6

(vi) Let E6 be the event ‘getting sum 7’

Favourable outcomes for the event E6 = {(4,3),(4,3),(5,2),(5,2),(6,1),(6,1)}

n(E6) = 6

P(E6) = n(E6)/n(S) = 6/36 = 1/6

(vii) Let E7 be the event ‘getting sum 8’

Favourable outcomes for the event E7 = {(5,3),(5,3),(6,2),(6,2)}

n(E7) = 4

P(E7) = n(E7)/n(S) = 4/36 = 1/9

(viii) Let E8 be the event ‘getting sum 9’

Favourable outcomes for the event E8 = {(6,3),(6,3)}

n(E8) = 2

P(E8) = n(E8)/n(S) = 2/36 = 1/18 answer

Q.5: A coin is tossed two times. Find the probability of getting at most one head.

Solution:

When two coins are tossed, the total no of outcomes = 22 = 4

i.e. (H, H) (H, T), (T, H), (T, T)

Where,

H represents head

T represents the tail

We need at most one head, that means we need one head only otherwise no head.

Possible outcomes = (H, T), (T, H), (T, T)

Number of possible outcomes = 3

Hence, the required probability = ¾ answer

Q.6: An integer is chosen between 0 and 100. What is the probability that it is

(i) divisible by 7?

(ii) not divisible by 7?

Solution:

Number of integers between 0 and 100 = n(S) = 99

(i) Let E be the event ‘integer divisible by 7’

Favourable outcomes to the event E = 7, 14, 21,…., 98

Number of favourable outcomes = n(E) = 14

Probability = P(E) = n(E)/n(S) = 14/99

(ii) Let F be the event ‘integer not divisible by 7’

Number of favourable outcomes to the event F = 99 – Number of integers divisible by 7

= 99-14 = 85 answer

Hence, the required probability = P(F) = n(F)/n(S) = 85/99

Q. 7: If P(E) = 0.05, what is the probability of ‘not E’?

Solution:

We know that,

P(E) + P(not E) = 1

It is given that, P(E) = 0.05

So, P(not E) = 1 – P(E)

P(not E) = 1 – 0.05

∴ P(not E) = 0.95answer

Q. 8: 12 defective pens are accidentally mixed with 132 good ones. It is not possible to just

look at a pen and tell whether or not it is defective. One pen is taken out at random from

this lot. Determine the probability that the pen is taken out is a good one.

Solution:

Numbers of pens = Numbers of defective pens + Numbers of good pens

∴ Total number of pens = 132 + 12 = 144 pens

P(E) = (Number of favourable outcomes) / (Total number of outcomes)

P(picking a good pen) = 132/144 = 11/12 = 0.916answer

............................pls mark me as brainiest ...................................answer was not posting with 10 question so.......... Pls follow me...

Attachments:
Similar questions