Math, asked by BRAINLYxKIKI, 3 months ago

★ Maths Problem !!

1: Find the sum upto nth term of the series :

\boxed{\sf{\red{ 4 \:+\: 44 \:+\: 444 \:+\: . . . . . . \:+\: nth\: term }}}

2: If  \sf{ 1 \:+\: \dfrac{1}{10} \:+\: \dfrac{1}{100} \:+\: . . . . . . . \infty } , then find the sum of the series.

§→ Don't spam !
§→ I will appreciate good answerers​

Answers

Answered by 22advi
7

Answer:

Hope it helps....

Attachments:
Answered by mathdude500
5

Basic Concept :-

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ Sum of first n terms of an geometric sequence is,

\boxed{\red{\bf\:S_n \:  =  \: \dfrac{a \: ( \:  {r}^{n} \:  -  \: 1) }{r \:  -  \:  1 \:} \: if \: r  \ne \: 1}}

and

\boxed{\red{\bf\:S_n \:  =  \: n \times a, \:  \: if \: r \:  =  \: 1}}

and

\boxed{\red{\bf\:S_ \infty  \:  =  \: \dfrac{a}{1 - r} \:  \:  \: provided \: that \:  |r|  < 1}}

Wʜᴇʀᴇ,

  • Sₙ is the sum of first n terms.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • r is the common ratio.

Let's solve the problem!!

1. Sum to 'n' terms :-

 \sf \: 4 + 44 + 444 +  -  -  -  -  -  - n \: terms

  \:  \sf \:=  \:  \: \sf \: 4(1+ 11 + 111 +  -  -  -  -  -  - n \: terms)

  \:  \sf \:=  \:  \: \sf \: \dfrac{4}{9} (9+99 +999 +  -  -  -  -  -  - n \: terms)

\sf \:=\sf \: \dfrac{4}{9} ((10 - 1)+(100 - 1) +(1000 - 1) +  -  -   - n \: terms)

 \sf \:  = \dfrac{4}{9}\bigg((10 + 100 + 100 +  -  - n \: terms) - (1 + 1 + 1 +  -  - n \: terms \bigg)

 \sf \:  = \dfrac{4}{9}\bigg(\dfrac{10( {10}^{n} - 1) }{10 - 1} - n \times 1  \bigg)   \:  \{ \because  a = 10,r = 10 \}

 \sf \because \: S_n \:  =  \: \dfrac{a \: ( \:  {r}^{n} \:  -  \: 1) }{r \:  -  \:  1},r \ne1 \:  \: and \:  \: S_n = n \times a,r = 1

 \sf \:  = \dfrac{4}{9}\bigg(\dfrac{10( {10}^{n} - 1) }{9} - n  \bigg)

 \sf \:  = \dfrac{4}{9}\bigg(\dfrac{{10}^{n + 1} - 10 - 9n}{9}  \bigg)

 \sf \:  = \dfrac{4}{81}\bigg({10}^{n + 1} - 10 - 9n\bigg)

Question :- 2

Sum up to infinity :-

 \sf \: 1 + \dfrac{1}{10}  + \dfrac{1}{100}  +  -  -  -  \infty

Here,

\rm :\longmapsto\:a = 1 \:  \:  \:  \: and \: r = \dfrac{1}{10}

So,

Sum of series is given by

\rm :\longmapsto\:S_ \infty  \:  =  \: \dfrac{a}{1 - r}

\rm :\longmapsto\:S_ \infty  \:  =  \: \dfrac{1}{1 - \dfrac{1}{10} }

\rm :\longmapsto\:S_ \infty  \:  =  \: \dfrac{1}{ \:  \:  \: \dfrac{10 - 1}{10} \:  \:  \:  \: }

\rm :\longmapsto\:S_ \infty  \:  =  \: \dfrac{1}{ \:  \:  \: \dfrac{9}{10} \:  \:  \:  \: }

\rm :\longmapsto\:S_ \infty  \:  = \dfrac{10}{9}

Similar questions