English, asked by vibha1916, 7 months ago

maths question of exponent ​

Attachments:

Answers

Answered by arpitakashid
2

Answer:

5^4 = 25

11^2 = 121

11^4 = 14,641

5^4 = 625

5^2 = 25

4^2 = 16

25/121 × 14641/625 × 25/16

pls follow me

Attachments:
Answered by spacelover123
1

Question

Simplify ⇒ (\frac{5}{11})^{ 2} \times (\frac{11}{5})^{4} \times (\frac{5}{4})^{2}

\rule{300}{1}

Answer

To find the answer we must apply laws of exponent. Here for the second number we will apply this law ⇒ \frac{1}{a^{m}}= a^{-m}

(\frac{5}{11})^{ 2} \times (\frac{11}{5})^{4} \times (\frac{5}{4})^{2}

(\frac{5}{11})^{ 2} \times (\frac{5}{11})^{-4} \times (\frac{5}{4})^{2}

Since we the bases are same we will apply this law of exponent next ⇒ a^{m}\times a^{n} = a^{m+n}

(\frac{5}{11})^{ 2} \times (\frac{5}{11})^{-4} \times (\frac{5}{4})^{2}

(\frac{5}{11})^{ 2+-4}  \times (\frac{5}{4})^{2}

(\frac{5}{11})^{ 2-4}  \times (\frac{5}{4})^{2}

(\frac{5}{11})^{ -2}  \times (\frac{5}{4})^{2}

Now we will have to apply this law of exponent ⇒ a^{-m} = \frac{1}{a^{m}}

(\frac{5}{11})^{ -2}  \times (\frac{5}{4})^{2}

(\frac{11}{5})^{ 2}  \times (\frac{5}{4})^{2}

Since the exponents are the same we will apply this law of exponent next ⇒ a^{m} \times b^{m} = (ab)^{m}

(\frac{11}{5})^{ 2}  \times (\frac{5}{4})^{2}

(\frac{11}{5}  \times \frac{5}{4})^{2}

(\frac{11}{4})^{2

Since this question only tells to simplify you can either leave it here or find the actual value. I'll find the actual value for final answer here.

(\frac{11}{4})^{2

\frac{11\times 11 }{4\times 4 }

\frac{121}{16}

\bf \therefore (\frac{5}{11})^{ 2} \times (\frac{11}{5})^{4} \times (\frac{5}{4})^{2} = \frac{121}{16}

\rule{300}{1}

Similar questions