Math, asked by priyalbhanawat, 11 months ago

Maths question
Please answer fast
It's urgent as tomorrow is exam ​

Attachments:

Answers

Answered by Zaransha
1
Hey buddy, here we go


(i)
2 {x}^{2}  + 2 {y}^{2}  - 10x + 6y + 8 = 0 \\
Dividing both sides by 2,
 {x}^{2}  +  {y}^{2}  - 5x + 3y + 4 = 0 \\  {x}^{2} - 5x +  {( \frac{5}{2} )}^{2}   +  {y}^{2}  + 3y +  { (\frac{3}{2} )}^{2}   =  - 4 +  \frac{25}{4}  +  \frac{9}{4}  \\  {(x  -   \frac{5}{2}) }^{2}  +  {(y -  \frac{3}{2} )}^{2}  =  \frac{18}{4}  =  \frac{9}{2}   =  { (\frac{3}{ \sqrt{2} }) }^{2}
Therefore,
The center is,
((5/2),(-3/2)) and radius=3/ sqrt2.


(ii)
16 {x}^{2}  + 25 {y}^{2}  = 1600 \\  \frac{16 {x}^{2} }{1600}  +  \frac{ 25{y}^{2} }{1600}  =  1 \\  \frac{ {x}^{2} }{100}  +  \frac{ {y}^{2} }{64}  = 1

From this equation,
we get,
a =  \sqrt{100}  = 10 \\ b =  \sqrt{64}  = 8
(ignoring -ve values since distances are always positive).

c = ae =  \sqrt{ {a}^{2} -   {b}^{2}  }  \\ ae =  \sqrt{100 - 64}  =  \sqrt{36}  = 6\\ 10e = 6 \\ e =  \frac{6}{10}  = 0.6


so eccentricity = 0.6


Coordinate of foci= (+6,0) and (-6,0)
latus rectum=
 \frac{2 {b}^{2} }{a}  =  \frac{2 \times 64}{10}  =  \frac{128}{10}  = 12.8






Finally OVERRR!!!
Similar questions